Tag Archives: Monterey Bay Aquarium Research Institute

Automated monitor provides early warning of harmful algae blooms

Automated equipment installed Monday off the Washington Coast will track concentrations of six species of plankton that could become harmful to humans and marine species.

The Environmental Sample Processor, or ESP, collects discrete samples of water and processes them for analysis. Imbedded modules can test for DNA and antibodies to identify the organisms picked up in the seawater. Concentrations of the plankton and their toxins are sent to shore-based researchers via satellite.

The equipment was installed by scientists with the National Oceanic and Atmospheric Administration and the University of Washington. The device was developed at the Monterey Bay Aquarium Research Institute. Stephanie Moore of NOAA’s Northwest Fisheries Science Center explains the benefits of the device in the first video on this page. The second video provides a few more technical details with graphic depictions of the device.

The ESP was deployed in the Juan de Fuca eddy, a known pathway for toxic algae 13 miles off the Washington Coast near LaPush. The remote, self-operating laboratory will operate about 50 feet underwater.

One of the primary targets of the monitoring is Pseudo-nitzschia, a harmful algae capable of producing domoic acid. This toxin can accumulate in shellfish and can cause diarrhetic shellfish poisoning, which can progress to severe illness. Last year, a massive bloom of this toxic algae canceled scheduled razor clam seasons on Washington beaches with untold economic consequences.

The harmful algal bloom (HAB) affected the entire West Coast, from California to Alaska. It was the largest and longest-lasting bloom in at least 15 years, according to NOAA’s National Ocean Service.

“Concentrations of domoic acid in seawater, some forage fish and crab samples were among the highest ever reported in this region,” says a factsheet from the service. “By mid-May, domoic acid concentrations in Monterey Bay, California, were 10 to 30 times the level that would be considered high for a normal Pseudo-nitzschia bloom.”

“Other HAB toxins were also detected on the West Coast. Shellfish closures in Puget Sound protected consumers from paralytic shellfish poisoning and diarrhetic shellfish poisoning.”

Paralytic shellfish poisoning is associated with a group of plankton called Alexandrium, typically Alexandrium catenella in the Puget Sound region.

In addition to sampling for Alexandrium and four species of Pseudo-nitzchia, the ESP is monitoring for Heterosigma akashiwo, which is associated with massive fish kills, including farmed salmon.

Anyone can track some of the data generated by the equipment by visiting NANOOS — the Northwest Association of Networked Ocean Observing Systems.

Early warning of toxic algal blooms can assist state and local health officials in their surveillance of toxic shellfish.

“Anyone can access the data in near-real-time,” UW oceanographer and NANOOS Director Jan Newton told Hannah Hickey of UW News and Information. “It’s an early warning sentry.”