Tag Archives: Marilyn Grindrod

COPDers One Legged Bike Training Study in Chest

 

YES, COPDers CAN improve aerobic capacity with one-legged exercise training compared with two-legged training in stable patients with COPD.  However – how practical is it for the COPDer riding out in traffic for fun and exercise perched upon one of those crotch-numbing seats on an upright bicycle with one pedal?

Studies are great and as a COPDer, some studies are cause for great excitement learning how we can add more to our daily lives to help ourselves.  The big question here is – how do the study results transfer over to using it in a practical way?

Thanks to Chris Wigley a COPD friend and fellow EFFORTS member in Canada for the following study.  Published in Chest – results on one-legged exercise training.

My question is how can a COPDer get the same results riding a recumbent trike using pendulum pedals?    http://pugetsoundblogs.com/copd-and-other-stuff/2011/07/10/severe-copd-and-eccentric-cycling-protocol-study/

Additionally, how do water workouts help the COPDer gain FEV1 if they are strenuous air exchanges?

My swim coach, Marilyn Grindrod cranked up our workouts yesterday and I feel it for the first time – excited and pleased to feel muscles I have not felt in years and my endurance has increased…far fewer slowdowns to breathe.  It seems to me that oxygen must be moving more getting to the rest of the body.

The water workouts will build up the muscling around my left hip so – hopefully – I can get back on my regular recumbent trikes.

Currently we are working harder on my upper body conditioning and muscle building for my arm pedal recumbent trike.  One way or another, I have a cycling trip to take.

I would like to know why these bike studies use the upright bike when – for most COPDers, we are better off on the more stable and comfortable recumbent trikes – many due to mobility issues.

Most seniors can ride a recumbent trike – fewer can ride the crotch killing upright bike.

 

Effects of One-Legged Exercise Training of Patients With COPD*

Thomas E. Dolmage, MSc and

Roger S. Goldstein, MD, FCCP

+ Author Affiliations

*From Respiratory Diagnostic and Evaluation Services (Mr. Dolmage), West Park Healthcare Centre Toronto; and Department of Medicine (Dr. Goldstein), University of Toronto, Toronto, ON, Canada.

 

Correspondence to: Thomas E. Dolmage, MSc, West Park Healthcare Centre, 82 Buttonwood Ave, Toronto, ON, M6M 2J5, Canada; e-mail: RGoldstein@westpark.org

Abstract

Background: Most patients with severe COPD are limited by dyspnea and are obliged to exercise at low intensity. Even those undergoing training do not usually have increased peak oxygen uptake (V̇o2). One-legged exercise, at half the load of two-legged exercise, places the same metabolic demands on the targeted muscles but reduces the ventilatory load, enabling patients to increase work capacity. The purpose of this study was to determine whether one-legged exercise training would improve aerobic capacity compared with two-legged training in stable patients with COPD.

 

Methods: Eighteen patients with COPD (mean FEV1, 38 ± 17% of predicted [± SD]) were randomized to two groups after completing an incremental exercise test. Both trained on a stationary cycle for 30 min, 3 d/wk, for 7 weeks. Two-legged trainers (n = 9) cycled continuously for 30 min, whereas one-legged trainers (n = 9) switched legs after 15 min. Intensity was set at the highest tolerated and increased with training.

 

Results: Both groups increased their training intensity (p < 0.001) and total work (p < 0.001). After training, the change in peak V̇o2 of the one-legged group (0.189 L/min; confidence interval [CI], 0.089 to 0.290 L/min; p < 0.001) was greater than that of the two-legged group (0.006 L/min; CI, − 0.095 to 0.106 L/min; p = 0.91). This was accompanied by greater peak ventilation (4.4 L/min; CI, 1.8 to 7.1 L/min; p < 0.01) and lower submaximal heart rate (p < 0.05) and ventilation (p < 0.05) in the one-legged trained group.

Conclusion: Reducing the total metabolic demand by using one-legged training improved aerobic capacity compared with conventional two-legged training in patients with stable COPD.

lung diseases, obstructive

muscle, skeletal

oxygen consumption

physical conditioning, human

rehabilitation, pulmonary

The cornerstone of pulmonary rehabilitation is exercise training, based on the premise that altering physiologic processes will result in improved outcomes.12 Intensity and duration are important determinants of the physiologic adaptations that occur in response to exercise training.3456 However, most patients with COPD are so limited by dyspnea, even at modest levels of ventilation, that their training is restricted to low-intensity exercise.7 As a result, when undergoing exercise training they are usually unable to increase their peak oxygen uptake (V̇o2),8 although this measure is the recognized standard for confirming the physiologic effects of aerobic exercise training.

 

One approach that might allow training at a higher intensity, addressing the peripheral muscle deconditioning, is to partition the exercise to a smaller muscle mass while maintaining the same muscle-specific load. We have reported that patients with COPD achieved more work when cycling with one leg.9 Despite the same load being applied to the muscle, one-legged exercise placed the same metabolic and functional demands on the targeted muscle, at a lower total metabolic load, and hence a lower ventilatory load. The next logical step is to test the hypothesis that training using a one-legged technique, thereby increasing the muscle-specific stimulus, would induce physiologic changes sufficient to increase peak V̇o2. We report the influence of one-legged training on peak V̇o2 during incremental exercise compared with conventional two-legged training under identical conditions of training frequency and session duration.

Previous SectionNext Section

Materials and Methods

Patients

 

Inclusion required a diagnosis of COPD10 based on standardized spirometry,11 clinical stability, smoking abstinence, and willingness to enroll in an inpatient or outpatient pulmonary rehabilitation program that included supervised exercise, education, and psychosocial support. Patients were excluded if they were hypoxemic at rest (Pao2 < 55 mm Hg), had comorbidities that limited their exercise tolerance, or were unable to provide informed consent. After baseline assessments, patients were allocated to one of the two exercise training methods (one-legged or two-legged training) according to an unrestricted computer-generated randomization list. The study was approved by the West Park Healthcare Centre Research Ethics Committee.

Exercise Training

 

Both the one-legged and the two-legged groups followed the same training regimen, except that one-legged trainers used the first half of the session to train one leg, followed immediately by completing the session using the other leg. Patients allocated to the one-legged group cycled while resting their inactive foot on a crossbar located midway on the ergometer head tube (Fig 1 ). Two-legged trainers cycled continuously throughout the session. Training was performed on an electromechanically braked cycle (Collins CPX Bike model 0070; Warren E. Collins; Braintree, MA) while breathing room air. Supervised training sessions were scheduled for three times per week for 7 weeks. The intensity was intended to allow 30 min of continuous exercise excluding warm-up and cool-down periods. The intensity was set at 50% and 70% of the peak power (Ppk) attained on the baseline incremental test for the one-legged and two-legged trainers, respectively, and reduced as necessary to obtain at least 30 min of continuous cycling; therefore, during the first week of the program, patients trained at a mean of 40% Ppk for one-legged and 56% Ppk for two-legged training, respectively. When the exercise duration reached 30 min for three consecutive sessions the training workload was increased by 5 W. The goal was to train at the highest power that the patient could maintain for at least 20 min. If, at any time, the patient found the workload intolerable, it was reduced to its previous setting. All other rehabilitation modalities were similar.

One-legged cycling. The subject is shown (having given informed consent) pedaling with his right leg while resting his left leg on the crossbar, midway on the head tube.

Outcome Measures

… The load was set at 80% of the Ppk achieved on the baseline incremental test. Patients breathed ambient air during all tests.

Eighteen patients, 9 randomly allocated to each group, completed the study. Two patients withdrew: one allocated to the one-legged group, following an acute exacerbation; and the other patient, allocated to the two-legged group, was uncomfortable cycling. The baseline characteristics of each group are presented in Table 1 ; there were no significant differences between study groups. All of the nine patients allocated to the one-legged group could easily manage this technique after simple instruction from the trainer.

Patients Who Completed Training*

Exercise Training

Both groups significantly increased their training intensity (p < 0.001) over the duration of the training program (Fig 2 ), with no significant difference between groups in the progression of training intensity. Three of the nine subjects in the two-legged group progressed to a training intensity of > 80% Ppk; one of the nine subjects in the one-legged group progressed to a training intensity of 86% Ppk. Both groups significantly increased their total work per session (p < 0.001) over the duration of the program (Fig 3 ). The slope of absolute work vs training time was greater in the one-legged group than in the two-legged group (p < 0.05).

…..

One-legged cycle training required no specific learning, and patients found it at least as comfortable as two-legged training, likely because leg fatigue is better tolerated than dyspnea. One-legged training does not preclude other strategies to improve exercise tolerance, such as supplemental oxygen,202223 mechanical ventilatory assistance,24252627 or heliox.242829

 

Models suggest that a limitation in the exercising muscle contributes to the low peak V̇o2 in COPD patients.3031 In our study, peak V̇o2 during incremental exercise increased among the one-legged training group, and V̇e at submaximal exercise decreased.71932 Some of the observed differences between groups, such as the lower submaximal HR and the increased posttraining peak V̇e in the one-legged group, were unexpected.

Although the effect of one-legged cycling on constant power endurance time was large, it also increased in the two-legged trainers, which almost certainly prevented there being a significant between-group difference. Had one-legged cycling been compared to a control group who did not exercise, there would undoubtedly have been statistically significant differences in constant power endurance. The latter measure is quite variable36 and therefore requires a larger sample size than was included in this study.

To minimize any small bias that might be associated with the absence of blinding,8 we used standardized instruction and encouragement during the exercise tests and included a comparison group of two-legged trainers, who expected to experience a positive training effect. The changes in effort independent submaximal responses, such as HR, also supported the differences being attributable to a treatment effect. Within the spectrum of COPD patients, this training modality may be most effective among the more severely ventilatory-limited patients.

In summary, we report the effects of one-legged cycle training on aerobic capacity in patients with COPD. Compared with conventional two-legged cycling, there is evidence that one-legged training enhances the adaptive response of peripheral muscle, resulting in increased peak V̇o2, Ppk, and peak V̇e. A large prospective clinical trial will better characterize the ideal candidate and provide a sample size sufficient for this method of training to be assessed using more variable outcomes such as constant power exercise and health-related quality of life. Muscle-specific training should be considered in conjunction with other approaches that improve exercise capacity in patients with chronic respiratory conditions.

.…

Acknowledgments

The authors thank the patients of West Park Healthcare Center as well as Mika Nonoyama and Stefania Costi for help supervising the training sessions.

http://chestjournal.chestpubs.org/content/133/2/370.full.html

Thanks for reading…. Sharon O’Hara

The Action is Hot Lungs, Harrison and Exercise – Part 3 of 3

 

The Heart & Vascular Center at Harrison, Cardiopulmonary Rehabilitation is Ready to Go!

Good!  Many of us can use help meeting our goals!  How, when, where?

Mai-Lin Gonzales is Harrison Medical Center’s Interim Manager of Cardiopulmonary Rehabilitation – the first for Harrison.  Mai-Lin is working to establish cardiopulmonary rehabilitation centers throughout Kitsap County…beginning with the established Capri Cardiopulmonary I went through over a decade ago – a great program then.

Following is what patients have to look forward to …because an exercise program can make the difference between existing and quality life living for most of us.  Many studies have  proved a great shining star of preventative medicine is exercise.

1.  Where, when, time, type of equipment

Mai-Lin – We will be remodeling the current suite (Capri) 111 in the Bridgeview building during July.  The equipment will be the same type of treadmills, bikes, nusteps, arm ergometers, etc.  We will be purchasing them from CAPRI and integrating a few new pieces to make a complete set for our needs.

Me – I hope they add the recumbent elliptical stationary bike. The recumbent elliptical stationary bike is expensive but allows those of use with hip problems to exercise.  I could not pedal the regular recumbent bikes but was placed on the recumbent elliptical.  I could use it and over time with Anna Marx; I had magical results on it.  Anna is at Silverdale’s Kitsap Physical Therapy.

2.  Will a workout pool be available?

Mai-Lin – The pool at the YMCA will not be part of the maintenance program.  The pool is for Y members only.  It would be difficult to watch participants in the pool and on the upper cardio deck at the same time.   I would be happy to pursue asking the Y to consider creating a time that the pool could be open for a rehab population but it would be separate from the Harrison programs.

3. Will maintenance rehab be available

Mai-Lin – Maintenance will be available in Poulsbo and Port Orchard (through Ultimate Fitness) and Silverdale and Bremerton (through Harrison) and Kitsap Physical Therapy has a program in place in Kingston.  We are encouraging other community facilities to start maintenance classes for the cardiopulmonary population – hoping to find a fit in Belfair and Bainbridge to start with…

4.   Is Harrison is interested in a DASH Diet related Support Group? Even those who have had gastric bypass surgery must be vigilant about regaining the weight lost through the operation.

Mai-Lin: I will pursue this after I get Rehab up and running.

5. Is Harrison interested in and have a use for my excellent like new condition recumbent trikes?

Maui-Lin – We are restricted on space, I will not have an answer for this until we are in the space and have the equipment laid out.

********************************

I have had one goal for six or seven years.

http://www.cleanairadventures.org/big_ride_across_america/route_map.html

This year is the first time I set a set date, 5 June to leave on a self-tour following the same route as the Big Ride.

A long list of mishaps, bone on bone left hip, lymphedema and fat body brought ne to 1 February 2011 when Marilyn Grindrod and I began our first swim coach session.  Over a two or three-month period of remarkable physical improvement, I KNEW I could pedal and ride again.

The day Marilyn and I went out to ride the trikes for the first time – my absolute confidence in being able to pedal due to the increasing physical shape, muscling and range of motion I was getting thanks to the swim sessions was knocked to the ground and stomped flat.  I could not do it.

That was then, now is now and we have begun again – twice a week – and I have a recumbent delta hand cycle that does work for me – no hip pain… more later.

A Florida Trike Shop owned and operated by physically challenged recumbent trike riders told me about the pedal pendulum.  I bought two – one from them and one set from Dave.  They work great on my trikes, but it does not work for me.  I cannot do more than a lower half pedal – too much pain to bring my leg up and over in a full pedal.  I can hear and feel the left hipbones rub when my leg is crested to move up and over.  We will keep working at it.

The hard lessons here sometimes- let go and move on.

**********************

Sitting and early death.

“Too much sitting leads to early death. In a recent study from the Cooper’s Institute.  The cardiovascular mortality outcomes related to sedentary behaviors of men after 21 years of follow-up showed an 82% greater risk of dying among men who reported spending more than 10 hours per week sitting in automobiles compared with men sitting in automobiles less than 4 hours per week (7).”

http://journals.lww.com/acsm-healthfitness/Fulltext/2011/01000/The_Problem_With_Too_Much_Sitting__A_Workplace.14.aspx?WT.mc_id=EMxj00x20110627xL3

Thanks for reading… Sharon O’Hara