Tag Archives: Climate change

Amusing Monday: Fighting climate change with a silly school play

A school play about climate change, featuring a worried mother polar bear and evil villains named “Mr. Carbon” and “Mr. Methane,” have captured the imaginations of elementary and junior-high-school students across the country.

The program, called “Cool the Earth,” includes follow-up activities that encourage the young students to bring climate-saving ideas home with them.

The first video on this page shows a play performed by teachers at Spring Valley Science School in San Francisco. I love the laughter of the children in the background. The second video shows an NBC News story from 2011.

The “Cool the Earth” program was developed in 2007 by Carleen and Jeff Cullen, parents in Marin County, Calif., who became inspired to take action on climate change after viewing Al Gore’s documentary “An Inconvenient Truth.” Showing the film to others failed to gain the action they desired, so they expanded their horizons by developing an easy-to-understand message that could be shared with kids and their parents.

The program was launched at Bacich Elementary School in Kentfield, Calif., and has grown to involve more than 200 schools across the country, though most are in California. See the list at “Participating Schools and Troops.”

An article on the Green Schools Initiative website quotes Heather Dobbs, a parent coordinator at Alexander Hamilton School in Morristown, N.J., who says “Cool the Earth” explains climate change in a meaningful way:

“The kids love the play because the teachers playing the parts are big hams. It tugs at the kids’ heart strings when they hear about polar bears in danger. Kids can take in that story more easily than just hearing about carbon emissions.”

Students then take home coupon books offering 20 ideas for no- or low-cost actions that they can do on their own or with their parents to earn points and sometimes prizes, such as earth-friendly trading cards.

Carleen Cullen explains the program in the video below.

Washington state breaks heat record during 2015

Last year was the warmest year on record for Washington state, as well as Oregon, Montana and Florida, according to climatologists with the National Oceanic and Atmospheric Administration.

Temps

For the entire contiguous United States, 2015 was the second-warmest in 121 years of temperature records going back to 1895. The average temperature last year was 54.4 degrees, some 2.4 degrees above the long-term average, according to NOAA. Only the year 2012 was hotter.

Those extreme U.S. temperatures will contribute to what is expected to be the highest worldwide temperature average on record. Findings are to be completed later this month.

If 2.4 degrees above average does not seem like much, think about raising your home’s thermostat by 2.4 degrees and leaving it there for the entire year, said Deke Arndt, chief of the NOAA’s Climate Monitoring Branch.

“You would feel the difference,” Arndt said during a telephone briefing this morning, when scientists reported an increasing number of extreme weather events across the United States — from severe winter storms on the East Coast last February to wildfires in the West during the summer to tornadoes across Texas and the Midwest in December.

Changes in temperatures and precipitation are changing ecosystems for plants and animals across the United States and throughout the world.

For the year 2015, every state in the nation was warmer than the long-term average, although various regions of the country acted quite differently. In the West, the year started out warm but ended up cool. In the East, residents began the year with record cold temperatures but ended with unseasonable warm conditions.

In terms of precipitation, 2015 was the third-wettest year on record in the contiguous United States, with a total average of 34.47 inches. That’s 4.5 inches above the long-term average. It was the wettest year on record for Texas and Oklahoma, but Washington was close to average for annual rainfall.

Precip

Washington state and the entire West returned to normal temperatures for the month of December, but 29 states across the East, Midwest and South recorded all-time-record highs for the month.

Twenty-three states — including Washington, Oregon and Idaho — were much wetter than average in December, which ranked as not only the warmest December on record across the U.S. but also the wettest.

Record flooding was reported along the Mississippi River and its tributaries, with floods coming several months earlier than normal.

“Record crests and overtopped levees were observed along parts of the Mississippi River and its tributaries; deadly tornadoes ripped through the Southern Plains and Mid-South; and heavy snow/ice was observed from the Southern Rockies to Midwest and New England,” state’s a summary report released by NOAA. “This storm system resulted in at least 50 fatalities across the country — the deadliest weather event of 2015 — and caused over $1 billion in losses, according to preliminary estimates.”

Across the country last year, 10 separate weather-related events caused more than $1 billion each in damages — specifically, a major drought, two major floods, five severe storms, a series of wildfires and a major winter storm, each defined by NOAA based on their timing and location.

Across the West, more than 10 million acres of forestland burned, the greatest extent of fire since record keeping began in 1960.

“We live in a warming world, bringing more big heat events and more big rain events,” Arndt said, adding that the pattern is expected to continue in the coming years.

The extremes seen in the U.S. are being experienced across the globe, he added. The U.S., which takes up 2 percent of the Earth’s surface, experienced its second-warmest year on record. Worldwide, however, it appears that 2015 will go down as the warmest year so far. Global findings are due out in about two weeks.

Amusing Monday: ‘Don’t fret,’ says new celebrity video for climate deniers

A new celebrity-filled music video, billed as the “Climate Change Deniers’ Anthem,” assures us that “the Earth’s not getting warmer; these temperatures are normal.”

The satire, posted on the website “Funny or Die,” is reminiscent of the 1985 video of “We Are the World,” which involved many voices in the effort to raise money for African famine relief.

The new video opens with David and Charles Koch , both played by Beau Bridges, explaining that the real problem plaguing society is “idiots who claim that climate change is real.”

“Folks, climate change is pure fiction.”

Performers include about a dozen stars, including Emily Osment, Darren Criss, Ben Feldman, Jennette McCurdy, Estelle and Ed Weeks. At the end of the inspiring song, actress January Jones has a lively conversation with the Koch brothers, explaining why she is not interested in performing in their video.

Involved in the production of the satirical video was ClimateTruth.org, which was formed to combat disinformation about climate change and discuss solutions to the problem.

“Funny or Die” is the Emmy-winning comedy website created in 2007 by Will Ferrell, Adam McKay and Chris Henchy. The website has taken aim at many humorous issues, including climate change and the so-called “climate deniers.”

The second video on this page features Kristen Wiig, who has a solution to climate change, her “Global Breathing Initiative.” Since everyone exhales carbon dioxide, she notes, think how much we could reduce greenhouse gas emissions if everyone would hold their breath for a minute a day.

What appears to be largely a monologue is actually part of a longer video called the “Clinton Foundation: Celebrity Division.” Actor Ben Stiller leads a focus group of celebrities trying to come up with ideas to help the Clinton Foundation do more good for society.

Another “Funny or Die” video focused on climate change is called “Climate Change Denial Disorder,” featuring Ed Begley Jr. playing the role of a senator with some sort of brain disorder.

Climate change to alter habitats in Puget Sound

In 50 years, Puget Sound residents will see mostly the same plants and animals they see today, but some changes can be expected. Our favorite species may disappear from places where they are now common.

Climate change is expected to bring higher temperatures, shifts in precipitation patterns, rising sea levels and ocean acidification. Some species will no doubt cope where they are. Some will not. Some could move to more hospitable locales, perhaps farther north or to higher elevations in the mountains.

“There are going to be some winners and some losers,” research biologist Correigh Greene told me. His comment seemed to sum up the situation nicely, and I used this quote in the final installment of a three-part series I wrote for the Puget Sound Institute and the Encyclopedia of Puget Sound.

All three climate stories are largely based on a new report from the Climate Impacts Group at the University of Washington called “State of Knowledge: Climate Change in Puget Sound.”

What stands out in my mind is how Puget Sound’s food web could be disrupted in unexpected ways. For example, tiny shelled organisms — key prey for many fish species — are already dying because they cannot form healthy shells. And that’s just one effect of ocean acidification.

The observations mentioned in my story and in the report itself come from a variety of experts who understand the needs of various species — from those that live in the water to those dependent on snow in the mountains. What will actually happen on the ground depends on many variables — from the buildup of greenhouse gases to changing trends such as El Nino.

As things are going, it appears that this year will be the warmest on record. The global average surface temperature is expected to reach the symbolic milestone of 1 degree Celsius above the pre-industrial era, according to the World Meteorological Organization. The years 2011 through 2015 have been the warmest five-year period on record, with many extreme weather events influenced by climate change, according to a five-year analysis by WMO.

The new report from the Climate Impacts Group discusses various scenarios based on total emissions of greenhouse gases. High scenarios presume that emissions will continue as they are now. Low scenarios presume that people will dramatically reduce emissions. What will actually happen is unpredictable at this time.

Greenhouse gas emissions are used to predict carbon dioxide concentrations in the atmosphere, ultimately pushing up the average global temperature. The first graph below shows the range of annual emissions (in gigatons of carbon) depicted by the various scenarios. The next graph shows how the emissions translate into atmospheric concentration. One can take any of the scenarios and see how the levels translate into temperatures at the end of the century. For a more complete explanation, go to page 19 of the report, where these graphs can be found.

Emissions

CO2

Temps

Climate report describes changes coming to the Puget Sound region

How climate change could alter life in the Puget Sound region is the focus of a new report from the University of Washington’s Climate Impacts Group.

A 1997 landslide on Bainbridge Island killed a family of four and resulted in five homes being condemned for safety reasons. Landslides can be expected to increase in the future because of changes in precipitation patterns. Kitsap Sun file photo
A 1997 landslide on Bainbridge Island killed a family of four and resulted in five homes being condemned. Landslides can be expected to increase in the future because of changes in precipitation patterns.
Kitsap Sun file photo

In concert with the report’s release, I’m writing three stories for the Encyclopedia of Puget Sound, all focusing on specific aspects of the report, beginning with landslide risks. See “Shifting ground: climate change may increase the risk of landslides” on the Puget Sound Institute’s blog.

As the new report describes, increased flooding, more frequent landslides and decreased salmon runs are likely, along with declines in some native species and increases in others. We are likely to see more successful invasions by nonnative species, while summer drought could cause more insect damage to forests and more forest fires.

The report, “State of the Knowledge: Climate Change in Puget Sound,” pulls together the best predictions from existing studies, while updating and expanding the range of topics last reported for Puget Sound in 2005.

“When you look at the projected changes, it’s dramatic,” said lead author Guillaume Mauger in a news release. “This report provides a single resource for people to look at what’s coming and think about how to adapt.”

The report includes examples of communities taking actions to prepare for climate change, such as merging flood-management districts to prepare for increased flooding in King County and designing infrastructure to contend with rising sea levels in other areas.

“In the same way that the science is very different from the last report in 2005, I think the capacity and willingness to work on climate change is in a completely different place,” Mauger said.

Sheida Sahandy, executive director of the Puget Sound Partnership, said the people of Puget Sound must be prepared for changes that have already begun.

“To protect Puget Sound, we need to plan for the ever-increasing impacts of climate change,” she said in a news release. “This report helps us better understand the very real pressures we will face over the coming decades. The effects of climate change impact every part of what we consider necessary for a healthy Puget Sound: clean water, abundant water quantity, human wellbeing, and a Puget Sound habitat that can support our native species.”

Work to compile the report was funded by the U.S. Environmental Protection Agency via the Puget Sound Institute at UW Tacoma, the National Oceanic and Atmospheric Administration and the state of Washington.

The report will become part of the Encyclopedia of Puget Sound, where my climate-change stories will reside after publication over the next three weeks. I’m currently working part-time for the Puget Sound Institute, which publishes the encyclopedia and is affiliated with the University of Washington — Tacoma.

For other news stories about the report, check out:

We know pollen helps seed the trees — but what about clouds?

It was the clever headline that caught my attention: “April flowers bring May showers?”

But it was the latest research about pollen from the University of Michigan and Texas A&M that got me digging a little deeper and eventually arriving at the subject of clouds and climate change.

The bottom line is a possibility that pollen from trees and flowers can break apart during a rainstorm. The broken pieces can then float up into the air and seed the clouds for the next rainstorm.

Allison Steiner, associate professor of atmospheric, oceanic and space sciences at U-M, began exploring how pollen might seed the clouds after sweeping a layer of pollen off her front porch one morning and wondering what happens after the pollen drifts into the air.

Atmospheric scientists have never paid much attention to pollen. It is generally believed that pollen grains are too large to seed the clouds. Instead, most attention has been focused on man-made aerosols, such as particles from a coal-fired power plant. High in the atmosphere, the particles can encourage moisture in the air to condense, the initial step in the formation of rain.

But people with allergies may recognize that their symptoms grow worse after a rainstorm when the air begins to dry out. As Steiner explains in an M-I news release:

“When we were looking in the allergy literature we discovered that it’s pretty well known that pollen can break up into these tiny pieces and trigger an allergic response. What we found is when pollen gets wet, it can rupture very easily in seconds or minutes and make lots of smaller particles that can act as cloud condensation nuclei, or collectors for water.”

In a laboratory at Texas A&M, Sarah Brooks, a professor in atmospheric sciences, soaked six different kinds of pollen in water, then sprayed the moist fragments into a cloud-making chamber. Brooks and her colleagues found that three fragment sizes — 50, 100 and 200 nanometers — quickly collected water vapor to form cloud droplets, which are 10 times bigger than the particles. (It takes about 6 million nanometers to equal a quarter of an inch, so we’re talking about very small particles.) Brooks noted in a Texas A&M news release:

“Scientists are just beginning to identify the types of biological aerosols which are important for cloud formation. Our results identify pollen as a major contributor to cloud formation. Specifically, our results suggest that increased pollen could lead to the formation of thicker clouds and longer cloud lifetimes.”

The effect of cloud formation on global warming may be the most important mystery in climate science today, according to Jasper Kirby, a particle physicist who is leading a team of atmospheric scientists from 15 European and U.S. institutions. Consequently, the effect of aerosols on cloud formation must be equally important.

Clouds are known to cool the planet by reflecting sunlight back out to space, but they can also contain heat at night, so cloud formation plays a critical role in determining the rate of global warming. To better predict global warming, one has to better understand when and how clouds are formed at a “very fundamental level,” Kirby told reporter Rae Ellen Bichell in “Yale Environment 360.” Kirby added:

“By fundamental, I mean we have to understand what the gases are, the vapors, that are responsible for forming these little particles. And secondly, we have to understand exactly how quickly they react with each other and how they form the aerosol particles which … constitute the seeds for cloud droplets. And this process is responsible for half the cloud droplets in the atmosphere. It’s a very, very important process, but it’s very poorly understood.”

In the upper atmosphere, aerosols can directly reflect sunlight back into space. These include man-made aerosols from industrial pollution as well as natural aerosols, such as volcanic eruptions and desert dust and now possibly pollen. Check out NASA’s webpage on “Atmospheric Aerosols.”

Steiner, who is doing the pollen experiments, said understanding natural aerosols is critical to understanding climate change:

“What happens in clouds is one of the big uncertainties in climate models right now. One of the things we’re trying to understand is how do natural aerosols influence cloud cover and precipitation under present day and future climate.

“It’s possible that when trees emit pollen, that makes clouds, which in turn makes rain and that feeds back into the trees and can influence the whole growth cycle of the plant.”

For people more interested in the allergy aspects of this story, I found a website called pollen.com, which identifies a variety of ways that weather can affect pollen and thus allergies:

  1. A mild winter can lead to early plant growth and an early allergy season,
  2. A late freeze can delay pollen production in trees, reducing the risk of an allergic reaction,
  3. Dry, windy weather increases the spread of pollen and worsens allergy symptoms,
  4. Rain can wash pollen out of the air, reducing the risk of exposure to pollen, but
  5. Rain can also increase the growth of plants, especially grasses, increasing the pollen levels.

For a research report about how rain can break up pollen into smaller particles to trigger allergies, check out “Thunderstorm-associated asthma in Atlanta, Georgia” by Andrew Grundstein et al.

Global cooling debate was never what some climate skeptics claim

Climate-change skeptics frequently bring up a 40-year-old story about climate change — a fleeting notion that the Earth was cooling.

Talking about that story, which was picked up by Newsweek and other publications, serves as a roundabout way for skeptics to ridicule the science of global warming, suggesting that scientists have never been able to get their story straight.

But the idea of global cooling failed to stand up to scientific scrutiny, and the whole idea of global cooling soon disappeared.

Now is the time to put that old story to rest, writes Peter Dykstra, publisher of the nonprofit Environmental Health Sciences, in a guest blog published on the Scientific American website.

“Rush Limbaugh is a frequent flyer on the Newsweek story, making the common error of promoting it to a ‘cover story.’” Peter writes, noting that it was a single-page, nine-paragraph piece on page 64.

“Lawrence Solomon, a kingpin of Canadian climate denial, added a new twist two years ago, claiming that the global cooling theory was growing to ‘scientific consensus,’” Peter said. “Yet the American Meteorological Society published a 2008 paper, which reported that even in the theory’s heyday, published papers suggesting a warming trend dominated by about six to one.”

Peter goes on to describe how various people have used the story to sew seeds of doubt about today’s leading climate-change findings.

“Science, in particular, moves on as it becomes more sophisticated,” he said. “The scientific community stopped talking about global cooling three decades ago. It’s time to retire this long-dismissed theory as an anti-science talking point.”

Peter’s blog includes a photograph of the old Newsweek story from April 28,1975, so I enlarged it and read what it actually said. Some excepts:

  • “In England, farmers have seen their growing season decline by about two weeks since 1950, with a resultant overall loss in grain production… During the same time, the average temperature around the equator has risen by a fraction of a degree – a fraction that in some areas can mean drought and desolation.”
  • “Last April, in the most devastating outbreak of tornadoes ever recorded, 145 twisters killed more than 300 people and caused half a billion dollars worth of damage in thirteen U.S. states.”
  • “To scientists, these seemingly disparate incidents represent the advance signs of fundamental changes in the world’s weather.”
  • “’Our knowledge of the mechanisms of climatic change is at least as fragmentary as our data,’ concedes the National Academy of Sciences report. ‘Not only are the basic scientific questions largely unanswered, but in many cases we do not yet know enough to pose the key questions.’”
  • “Climatologists are pessimistic that political leaders will take any positive action to compensate for the climatic change or even to allay its effects. They concede that some of the more spectacular solutions proposed, such as melting the polar ice cap by covering it with black soot or diverting arctic rivers, might create problems far greater than those they solve.”

Ironically, current research predicts that we will see increasing weather anomalies as a result of climate change. Studies also show that soot is unintentionally landing on the polar ice caps, melting them even faster. On the other hand, thousands of studies have now documented the warming trends in correlation with an increase in greenhouse gases.

If anyone doubts the level of climate-change research taking place, take a look at “Science Daily,” a website that compiles reports on all kinds of studies. The category “Climate” includes just a portion of the climate research underway throughout the world.

In a related development on climate change, a group of 28 Washington scientists wrote a letter to the Legislature (PDF 110 kb), saying our state is already feeling the effects of climate change:

“We must adapt to the inevitable impacts of a changing climate by investing in communities to make them more prepared for the current impacts and future risks of climate change. At the same time, Washington must also take appropriate steps to reduce heat-trapping emissions that would cause much more devastating consequences in the decades to come…

“We ask that you implement a policy that establishes a price on greenhouse gas emissions to encourage a shift to clean energy solutions and drive low-carbon innovation that will foster the clean industries of the future…

“The emissions choices we make today — in Washington and throughout the world — will shape the planet our children and grandchildren inherit. Please help create a cleaner, safer, and healthier future for Washington. Let this be our legacy.”

Climate change disrupts steady streamflows, adds problems for chinook

Climate change appears to be altering the flow characteristics of Puget Sound salmon streams, and the outcome could be an increased risk of extinction for chinook salmon, according to a new study.

I’ve long been interested in how new housing and commercial development brings more impervious surfaces, such as roads, driveways and roofs. The effect is to decrease the amount of water that infiltrates into the ground and to increase surface flows into streams.

Chinook salmon Photo: Bureau of Land Management
Chinook salmon
Photo: Bureau of Land Management

Stormwater experts talk about how streams become “flashy,” as flows rise quickly when it rains then drop back to low levels, because less groundwater is available to filter into the streams.

The new study, reported in the journal “Global Change Biology,” suggests that something similar may be happening with climate change but for somewhat different reasons.

Climate models predict that rains in the Puget Sound region will become more intense, thus causing streams to rise rapidly even in areas where stormwater is not an issue. That seems to be among the recent findings by researchers with NOAA’s Northwest Fisheries Science Center and Washington Department of Fish and Wildlife:

“Over the last half century, river flows included in our analysis have become more variable — particularly in winter — and these changes are a stronger predictor of chinook population growth than changes in average winter flows or climate signals in the marine environment.

“While other impacts to this ecosystem, such as habitat degradation, may be hypothesized as responsible for these trends in flow variation, we found support for increasing flow variation in high-altitude rivers with relatively low human impacts.”

Joseph Anderson of WDFW, an author of the report, told me that chinook salmon, listed as threatened under the Endangered Species Act, may be particularly vulnerable to dramatic changes in streamflows. That’s because spawning chinook tend to show up before winter storms arrive — when the rivers at their lowest levels. The fish are forced to lay their eggs in a portion of the river that will undergo the most forceful flows once the rains begin to fall.

High flows can scour eggs out of the gravel and create serious problems for emerging fry, Joe said. Other factors may come into play, but the researchers found a strong correlation between the sudden variation in streamflows and salmon survival.

In the lower elevations, where development is focused, flow variability could result from both impervious surfaces on the land and more intense rainstorms. Efforts to infiltrate stormwater into the ground will become even more important as changes in climate bring more intense storms.

Stormwater management is an issue I’ve written about for years, including parts of last year’s series called “Taking the Pulse of Puget Sound.” See Kitsap Sun, July 16, 2014. Rain gardens, pervious pavement and infiltration ponds are all part of a growing strategy to increase groundwater while reducing the “flashiness” of streams.

Other strategies involve restoring rivers to a more natural condition by rebuilding side channels and flood plains to divert excess water when streams are running high.

According to the report’s findings, the variability of winter flows has increased for 16 of the 20 rivers studied, using data from the U.S. Geological Survey. The only rivers showing less variability were the Cedar, Duwamish, Upper Skagit and Nisqually.

The effect of this streamflow variability was shown to be a more critical factor for chinook survival and growth than peak, total or average streamflow. Also less of a factor were ocean conditions, such as the Pacific Decadal Oscillation and related ocean temperature.

Eric Ward, of Northwest Fisheries Science Center and lead author on the study, said many researchers have focused attention on how higher water temperatures will affect salmon as climate change progresses. High-temperature and drought conditions in California, for example, could damage the organs of salmon, such as their hearts.

Salmon swimming up the Columbia River and its tributaries could encounter dangerously warm waters as they move east into areas growing more arid. Some salmon species are more vulnerable to temperature, while streamflow may be more important for others. Coho salmon, for example, spend their first summer in freshwater, which makes extreme low levels a critical factor.

Eric told me that further studies are looking into how various conditions can affect each stage of a salmon’s life, conditions that vary by species. One goal is to build complex life-cycle models for threatened species, such as chinook and steelhead, to determine their needs under the more extreme conditions we can expect in the future.

Earth gets hot in 2014, breaks record for average temperature

UPDATE, Jan. 20, 2015
Some people apparently are skeptical about whether 2014 was actually the warmest on record. They cite probabilities provided by government researchers to support their skepticism. But at least some skeptics seem confused about the meaning of this statistical uncertainty.

Andrew Freedman of Mashable tackles the subject in a straightforward way. But the best point in his piece comes in the final paragraph:

At the end of the day, the discussion about a single calendar year obscures the more important long-term trend of warming air temperatures, warming and acidifying oceans along with melting ice sheets, all of which are hallmarks of manmade global warming. Including 2014, 13 of the top 15 warmest years have all occurred since 2000.

—–

Last year turns out to be the hottest year on record for the Earth’s surface, according to climate researchers who analyzed average temperatures across the globe.

The year 2014 adds yet another dramatic page to the record book, which now shows that the 10 warmest years since 1880 have occurred since the year 2000 — with the exception of the record year of 1998, which now stands as the fourth warmest on record.

The data were released this morning, with additional information provided in a telephone conference call with scientists from NOAA — the National Oceanic and Atmospheric Administration — and NASA — the National Aeronautics and Space Administration. The two agencies conducted independent analyses of their data, coming to the same conclusion about the record year of 2014.

Across the Earth, the average temperature in 2014 was 1.24 degrees Fahrenheit above the annual average of 57.0 degrees F, with records going back to 1880. That breaks the previous records of 2005 and 2010 by 0.07 degrees F. It’s also the 38th consecutive year that the annual global temperature was above average.

Since 1880, the Earth’s average surface temperature has warmed by about 1.4 degrees Fahrenheit, mostly driven by an increase in carbon dioxide and other greenhouse gases released into the atmosphere, the researchers said. Most of the warming has come since the 1980s.

Gavin Schmidt, director of NASA’s Goddard Institute of Space Studies, made this comment in a prepared statement:

“This is the latest in a series of warm years, in a series of warm decades. While the ranking of individual years can be affected by chaotic weather patterns, the long-term trends are attributable to drivers of climate change that right now are dominated by human emissions of greenhouse gases.”

Although some skeptics have raised questions about whether global warming has been occurring in recent years, Schmidt said any short-term pause does not change the overall trend. In fact, the temperature rise seen for the past year fits perfectly onto a graph of the decades-long trend line for temperature rise.

temp graph

Ocean conditions such as El Nino or La Nina can affect temperatures year-to-year, Schmidt said. Since these phenomena can cool or warm the tropical Pacific, they probably played a role in temporarily “flattening” the long-term warming trend over the past 15 years, he added, but last year’s record-breaking temperatures occurred during a “neutral” El Nino year.

This past year was the first time since 1990 that the global heat record was broken in the absence of El Nino conditions during the year. If El Nino conditions are present at the end of 2015, the researchers said the chances are high that the record will be broken again this year.

As I mentioned in yesterday’s post in Water Ways, strong regional differences were seen last year in the contiguous United States, with several western states experiencing record highs while the Midwest suffered through an abnormally cold winter. Other cold spots can be seen on the global map, but the hot spots more than balanced them out to break the heat record.

global temps

Much of the record warmth of the Earth can be attributed to record heat accumulated across the oceans. The average ocean temperature in 2014 was 1.03 degrees higher than the longterm average of 60.9 degrees, breaking previous records set in 1998 and 2003.

Record months for ocean temperatures were seen from May through November, with January through April each among the all-time top seven, while December was the third warmest December on record. The all-time monthly record was broken in June of last year, then broken again in August and again in September. Such sustained warmth in the ocean has not been seen since 1997-98 — during a strong El Nino.

On the land surface, the average temperature was 1.8 degrees higher than the long-term average of 47.3 degrees F, or the fourth highest average land temperature on record.

Europe is expected to report that 2014 was the warmest year in at least 500 years, according to information from the World Meteorological Organization. Last year surpasses the previous record set in 2007. Much of that warmth can be attributed to the second-warmest winter on record, followed by a record-warm spring.

According to the WMO report, 19 European countries have reported or are expected to report that last year was their hottest year on record. They Austria, Belgium, Croatia, the Czech Republic, Denmark, France, Germany, Hungary, Iceland, Italy, Luxembourg, The Netherlands, Norway, Poland, Serbia, Slovakia, Slovenia, Sweden, and the United Kingdom.

Around the world, precipitation was near average for 2014, the third year that near-average precipitation was measured for land-based stations.

The 10 warmest years on record, in order:

1. 2014, 1.24 degrees above average
2 (tie). 2010, 1.17 degrees above average
2 (tie). 2005, 1.17 degrees above average
4. 1998, 1.13 degrees above average
5 (tie). 2013, 1.12 degrees above average
5 (tie). 2003, 1.12 degrees above average
7. 2002, 1.10 degrees above average
8. 2006, 1.08 degrees above average
9 (tie). 2009, 1.06 degrees above average
9 (tie). 2007, 1.06 degrees above average

For further information, check out:

Global Analysis — Annual 2014 from NOAA, and

GISS Surface Temperature Analysis from NASA.

Computer model shows colorful swirls as winds blow carbon dioxide

An ultra-high-resolution computer model ties weather into greenhouse gas emissions, and the resulting animation shows whirling and shifting plumes of carbon dioxide and carbon monoxide.

Ultimately, the greenhouse gases disperse into the atmosphere, increasing concentrations across the globe and contributing to global warming. It’s almost too complex to comprehend, but it is a fascinating process.

As you can see from the video, carbon dioxide levels are more significant in the Northern Hemisphere, where the emissions are out of phase with the Southern Hemisphere. That’s because the seasons are opposite, with the maximum growth of vegetation taking place at different times.

The reds and purples are the highest concentrations of carbon dioxide. The dark grays denote the highest levels of carbon monoxide, caused mainly by large forest fires.

Bill Putman, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, said it a prepared statement:

“While the presence of carbon dioxide has dramatic global consequences, it’s fascinating to see how local emission sources and weather systems produce gradients of its concentration on a very regional scale. Simulations like this, combined with data from observations, will help improve our understanding of both human emissions of carbon dioxide and natural fluxes across the globe.”

The animation was produced with data from measurements of atmospheric conditions plus the emission of greenhouse gases, both natural and man-made. The simulation, called “Nature Run,” covers a period May 2005 to June 2007. Engineers can use the model, called GEOS-5, to test satellite observations.

In July, NASA launched the Orbiting Carbon Observatory-2 (OCO-2) satellite to make global, space-based carbon observations. The additional data will add to Earth-based measurements. See also OCO-2 Mission Overview.

According to studies, last spring was the first time in modern history that carbon dioxide levels reached 400 parts per million across most of the Northern Hemisphere. Concentrations are continuing to rise, mainly from the burning of fossil fuels. Levels were about 270 ppm before the Industrial Revolution.

The GEOS-5 computer model is being used in tests known as Observing System Simulation Experiments (OSSE), which can help satellite observations tie into weather and climate forecasts.

Said Putnam:

“While researchers working on OSSEs have had to rely on regional models to provide such high-resolution Nature Run simulations in the past, this global simulation now provides a new source of experimentation in a comprehensive global context. This will provide critical value for the design of Earth-orbiting satellite instruments.”

For more detailed views involving various parts of the world, see “A Closer Look at Carbon Dioxide” on NASA’s website for “Orbiting Carbon Observatory 2.” For information about modeling, visit the website of the Global Modeling and Assimilation Office.