Amusing Monday: At Long Beach, people are really high on kites

Kites of all shapes and sizes have become common features at beaches all over the world, and an annual event at Long Beach on the Washington Coast is billed as the largest kite festival in the U.S.

The Washington State International Kite Festival, Aug. 15-21, is a weeklong event where people get to show off their kites and compete in aerial displays and downright battles that engage one acrobatic kite against another.

The American Kitefliers Association has organized daily “mass ascensions,” in which at least 100 kites of the same style take to the skies. Sport kite competitions involve kites flying in intricate patterns or dancing to music.

“It’s quite a rainbow of expression,” John Barresi. editor of Kite Life magazine, told reporter Terri Gleich in a story published July 22 in the Kitsap Sun.

“Part of my world,” John said, “is sharing kites with people who say, ‘Oh yeah, I remember I tried to fly a kite and I couldn’t.’ A kite that is well made will fly itself. People will be amazed at how easy it can be.”

The videos on this page give you an idea of the diversity of the kites. Miniature kites — some as small as one inch — can be viewed up close, and nobody can miss the giant kites, which can be up to 20 feet wide and 100 feet long. The precision and art of construction is part of the show.

Fighting kites involve the traditional Japanese Rokkaku kites, which are six-sided and designed for quick response, as well as smaller fighter kites. In battle, the goal is to disable an opposing kite or cut its string with abrasive line.

Promotional materials for this year’s festival mention indoor kites that can be flown without any wind at all. Download the complete program (PDF 10.8 mb) for details about the weeklong extravaganza.

An amazing number of kite festivals are held each year throughout the country. For a complete schedule with links to the various festivals, see Event Calendar on the American Kitefliers Association website.

Other videos I found entertaining include:

Hood Canal changes color from growth of white plankton

Hood Canal cloaked in light green from heavy plankton growth. NASA image: Jeff Schmaltz, LANCE/EOSDIS Rapid Response
Hood Canal cloaked in light green from heavy plankton growth.
NASA image: Jeff Schmaltz, LANCE/EOSDIS Rapid Response

From space, Hood Canal is easily recognized by its new shade of bimini green, a color that stands out clearly from the rest of Puget Sound and the Pacific Ocean, as shown in the photo above.

The color is caused by a large bloom of coccolithophore, a single-celled phytoplankton bearing a shell made of white calcium carbonate.

A more detailed image of the plankton bloom. NASA image: Jesse Allen, using Landsat data from USGS
A more detailed image of the plankton bloom.
NASA image: Jesse Allen, with Landsat data from USGS

Teri King of Washington Sea Grant spotted the unusual color more than a week ago from the ground while driving along Hood Canal.

“I thought to myself, ‘Am I dreaming of the Cayman Islands?’” she reported on her Facebook page. “I pulled over to the side and took a few photos to document my observations. I then had an opportunity to grab a water sample. Yep, a Coccolithophore bloom from Quilcene to Lilliwaup.

“It is hard to miss a bloom of this color,” Teri continued on Facebook. “We don’t see them often, but when we do it is remarkable. The water takes on a tropical blue green appearance with white speckles.”

Scanning electron micrograph of plankton Emiliania huxleyi
Scanning electron micrograph of plankton Emiliania huxleyi
Image: Alison R. Taylor, U. of North Carolina Wilmington

The photo from space (top) was taken last Sunday from NASA’s Aqua satellite with equipment used to capture the natural color. On Wednesday, a more detailed image (second photo) was taken from the Landsat 8 satellite.

Reporter Tristan Baurick describes the phenomenon in yesterday’s Kitsap Sun. The single-celled plankton are not harmful to people or animals, so the bloom won’t affect shellfish harvesting. Hood Canal, as we’ve discussed many times, is prone to low-oxygen conditions, often exacerbated by massive blooms of plankton, which reduce oxygen through the process of decay.

The last major bloom of this kind in Hood Canal was noted in northern Hood Canal during the summer of 2007. Samples taken at that time showed the species of coccolithophorid to be Emiliania huxleyi, according to a report for the Hood Canal Dissolved Oxygen Program.

NASA’s photos and description of the latest bloom can be found on the Earth Observatory website, which also includes just about all you need to know about coccolithophores.

Hood Canal is green alright, up close and far away. Photo: Meegan M. Reid, Kitsap Sun
Hood Canal is green alright, up close and far away.
Photo: Meegan M. Reid, Kitsap Sun

The proper use of crab pots means extra crabs for the dinner plate

“Catch more crab!”

This is a campaign slogan going out to Puget Sound crabbers. It is a positive message, built upon the goals of:

  • Helping people avoid losing their crab pots,
  • Reducing the number of crabs that go to waste, and
  • Increasing the number of crabs available for harvest.

Crab

We’ve talked about the problems of lost crab pots that keep on catching crabs on the bottom of Puget Sound. About 12,000 crab pots are lost each year in Puget Sound, killing an estimated 178,000 legal-sized Dungeness crabs that would otherwise be served up for dinner. In January, I described some simple alterations to crab pots that allow crabs to escape when a pot gets lost. See Water Ways, Jan. 28.

Even more basic, however, are proven techniques that help people select equipment and place their crab pots so they don’t get damaged or lost in the first place.

The Northwest Straits Initiative, authorized by Congress in 1998, has been working on the problem of derelict gear for years, including the retrieval of thousands of lost nets and crab pots from Puget Sound. When it came to enlisting the public’s help in prevention, campaign organizers realized that everyone was on the same side, said Jason Morgan of the nonprofit Northwest Straits Foundation.

Crab2

“We previously focused on the doom and gloom of it, talking about so many crabs killed each year,” Jason told me.

Working with sociologists, campaign organizers realized that “the better way to reach people is not to talk about dead crabs but to say we want you to catch more crabs and keep your crab pots.”

The Northwest Straits Foundation has developed a three-year plan of action, including education for the public; improved communication among crabbers, vessel operators and government officials; and recommendations for improving regulations.

The plan was put together by a working group of 35 people involved in various aspects of crab harvesting, boat traffic and resource protection.

“It was a great collaborative process,” Jason said. “There was no butting of heads or anything like that.”

The “Puget Sound Lost Crab Pot Prevention Plan” (PDF 996 kb) states:

“Crab pots are lost for a variety of reasons. Causes for loss generally fall into three categories:

  • Vessel interaction (both recreational and commercial vessels);
  • Improperly configured gear, including improperly tied knots; and
  • Improperly placed gear.

“All these categories usually include a degree of user error, either on the part of the crabber, or on the part of the boater or vessel operator.”

The plan includes at least 25 strategies for reducing conflicts between vessel traffic and crab pots, reducing tampering and sabotage, improving crabbing equipment and pot configuration, and removing abandoned crab pots during non-crabbing days.

One of the interesting ideas is to require online registration for recreational crab endorsements on fishing licenses. Applicants would take a short quiz to make sure they know the rules.

Rich Childers, shellfish manager for Washington Department of Fish and Wildlife, said the various regulatory proposals in the plan are under advisement. One idea, which has proven effective, is to reduce the size of allowable escape cord (“rot cord”) that opens an escape hatch for the crabs to get out. Studies have shown that approved escape cord takes between 30 and 148 days to disintegrate, and most people use larger cord to last longer.

The time that crabs are trapped and dying on the bottom could be reduced if the rules were changed to require smaller cord. Any rule changes would include a grace period, Childers said, and it would be nice if crabbers could obtain the smaller cord for free.

With crab season underway, a series of videos on the theme “Catch more crab!” couldn’t come at a better time:

A longer video shows how to modify a crab pot to make sure that crabs can escape when a crab pot is lost:

“Modify your crab pot: adding bungee cord & modifying escape ring”

The video below provides basic information for first-time crabbers. Meanwhile, outdoors writer Mark Yuasa offered a nice instructional story last week in the Seattle Times.

To check on crab seasons and legal requirements, visits the Recreational Crab Fishing webpage of the Washington Department of Fish and Wildlife.

Amusing Monday: Strange creatures and other ocean phenomena

Once in a while, a video shows up featuring some amazing phenomena not well known by most people. This is the case with a YouTube video by Mind Warehouse called “Ten Ocean Phenomena You Won’t Believe Actually Exist.”

I’ve featured several of the phenomena you’ll see in this video from my “Amusing Monday” series, but I admit that I did not know that some of these things even exist — and at least one photo appears to be a hoax that fooled the producers of the video on this page.

I’ve searched out a little more about each of the phenomena with links if you would like to learn more about any of these strange goings on.

Giant pyrosome

Thousands of self-cloned animals called tunicates occasionally come together to form a giant hollow tube that may grow to 60 feet long, according to Oceana’s Ocean Animal Encyclopedia. Giant pyrosomes are bioluminescent, producing their own light.

Because the tunicates can reproduce by cloning, the colony can regenerate its damaged parts to keep the tube intact. The tunicates that form pyrosomes are related to those found in the Salish Sea. Check out Emerald Diving’s tunicates page.

Megan Garber has written a story for The Atlantic, accompanied by a video, called “12 reasons pyrosomes are my new favorite terrifying sea creatures.”

Circles on the ocean bed

In 1995, divers discovered what looked like strange “crop circles” like those reported in farm fields, but these were on the ocean bottom near Japan. Other circles were found, but it took a decade before it was determined that male pufferfish make the circles as part of a mating ritual.

“When the circles are finished, females come to inspect them,” according to an article in LiveScience by Douglas Main. “If they like what they see, they reproduce with the males, said Hiroshi Kawase, the curator of the Coastal Branch of Natural History Museum and Institute in Chiba, Japan. But nobody knows exactly what the females are looking for in these circles or what traits they find desirable, Kawase told LiveScience.”

Striped icebergs

Most icebergs are white, but all sorts of blue-striped icebergs can be found in nature. They are the result of water filling a crevice and freezing so fast that no bubbles form. Green stripes form when algae-rich water freezes. Brown, yellow and black are the result of sediments being picked up by the water before it freezes. See undocumented photos and story by Mihai Andrei in ZME Science.

Red tide

Red tides can be found all over the world. Although “red tide” is a term often associated with poisonous plankton, many of the orange and red tides do not produce toxins harmful to people or marine life.

In Puget Sound, blooms of a dinoflagellate called Noctiluca sometimes create what appear to be works of art, as I described in Water Ways in June of 2013. Eyes Over Puget Sound, a program that monitors surface conditions, frequently presents pictures of colorful algae blooms, including a new edition published this morning.

Whirlpool

One of the strongest whirlpools in the world is at Saltstraumen, a fjord in Norway where a massive exchange of water rushes through an opening just 500 feet wide. Review the video “Deepest Hole in the Ocean.”

Brinicle

When salt-rich water streams into the sea, it can form an underwater finger of ice called a brinicle, sometimes referred to as “the ice finger of death.” The super-cooled briny water is colder than the surrounding sea, so the stream reaches out and freezes as it goes. See the article by Douglas Main in LiveScience or check out the blog post in Water Ways from November 2011.

Killer wave

When big waves come together at sea, the result is often a giant wave large enough to wreck an ocean-going ship or rush to shore with tremendous force. In January of this year, a killer wave — also known as a rogue wave — was recorded along the Pacific Coast in Grays Harbor County at a stream called Joe Creek. See Q-13 TV video “Rogue Wave …”

Frost flowers

When the air is considerably colder than a calm sea or lake, ice crystal can be extruded above the surface to form structures that resemble flowers. This occurs when water vapor sublimes from thin surface ice into the air without passing through the liquid phase. The warm moist air at the surface of the ice rises and quickly freezes in the colder air above.

Conditions leading to frost flowers often occur in the polar regions as new sea ice forms. Once the ice grows a little thicker, the surface cools down and the temperature difference between the ice and atmosphere are too close for the vapor to rise and then freeze.

Robert Krulwich, who hosted a science show for National Public Radio, discussed the phenomenon from the point of view of Jeff Bowman, a University of Washington graduate student in 2009 when he spotted frost flowers on his way back from an expedition to the Arctic.

Baltic and North sea meeting point

In the Mind Warehouse video, the narrator discusses a bunch of pictures purportedly showing the meeting point of the Baltic and North seas. I have been unable to track down all these photos or confirm that any of them were taken at the convergence zone of the Baltic and North seas.

One of the photos appears to have been taken in Alaska, showing the melt water from a glacier converging with ocean water. As in Puget Sound, the lower-density freshwater tends to form a layer over the salty seawater. See Kent Smith’s photo, taken from a cruise ship, and a story about research by the U.S. Geological Survey taken in the Gulf of Alaska.

It’s amusing to see all the myth-versus-fact posts on various Internet sites regarding the question of whether waters from the Baltic Sea actually mix with waters from the North Sea. (Search for “Baltic and North sea mixing.”) I gave up trying to find credible photos, but there exists an actual phenomenon regarding the mixing of the two seas. Wikipedia provides this explanation:

“The Baltic Sea flows out through the Danish straits; however, the flow is complex. A surface layer of brackish water discharges 940 km3 (230 cu mi) per year into the North Sea. Due to the difference in salinity, by salinity permeation principle, a sub-surface layer of more saline water moving in the opposite direction brings in 475 km3 (114 cu mi) per year. It mixes very slowly with the upper waters, resulting in a salinity gradient from top to bottom, with most of the salt water remaining below 40 to 70 m (130 to 230 ft) deep. The general circulation is anti-clockwise: northwards along its eastern boundary, and south along the western one.”

Bioluminescence

Living organisms can be seen to glow during a chemical reaction that involves a light-emitting pigment and an enzyme that serves as a catalyst for the reaction. Depending on the species, bioluminescence may be used to escape from prey, attract prey or signal for a mate. Sometimes researchers can’t tell why an animal has the ability to light up. One of the best write-ups I’ve seen is in Wikipedia.

Last fall, I featured in “Amusing Monday” a tiny creature called a sea sapphire that flashes brilliant hues of green, blue and purple then seems to disappear before your eyes. The organism is a copepod that is able to shift its plates to adjust the wavelength of light reflected from crystals underneath. When the reflected light is shifted far enough into the ultraviolet, the little animals nearly disappear.

Edith Widder, a specialist in bioluminescence, gives a fascinating TED talk on the subject in 2011. You can watch the video called “The Weird, Wonderful World of Bioluminescence,” in which she brings some glowing organisms to the stage.

Finding answers for dangerous decline of Puget Sound steelhead

Harbor seals have become prime suspects in the deaths of millions of young steelhead trout that die each year in Puget Sound, but the seals may not be working alone.

Trends

Disease and/or various environmental factors could play a part, perhaps weakening the young steelhead as they begin their migratory journey from the streams of Puget Sound out to the open ocean. Something similar is happening to steelhead on the Canadian side of the border in the Salish Sea.

More than 50 research projects are underway in Puget Sound and Georgia Strait to figure out why salmon runs are declining — and steelhead are a major focus of the effort. Unlike most migratory salmon, steelhead don’t hang around long in estuaries that can complicate the mortality investigation for some species.

The steelhead initiative was launched by the Washington Department of Fish and Wildlife and Puget Sound Partnership with funding from the Legislature. The steelhead work is part of the Salish Sea Marine Survival Project, which is halfway through its five-year term, according to Michael Schmidt of Long Live the Kings, which coordinates the effort in the U.S. The larger project involves at least 60 organizations, including state and federal agencies, Indian tribes and universities.

A new report on research findings for steelhead (PDF 9.8 mb) describes the most significant results to date for our official state fish, which was listed as “threatened” in 2007. While steelhead populations on the Washington Coast and Columbia River have rebounded somewhat since their lowest numbers in the 1980s, steelhead in the Salish Sea remain at historical lows — perhaps 10 percent of their previous average.

“Because steelhead are bigger and move fast through the system, they are easier to study (than other salmon species),” Michael told me. “It has been a lot easier to feel confident about what you are finding.”

Abundance

Steelhead can be imbedded with tiny acoustic transmitters, which allow them to be tracked by acoustic receivers along their migration routes to the ocean. It appears that the tagged fish survive their freshwater journey fairly well, but many soon disappear once they reach Puget Sound. The longer they travel, the more likely they are to perish before they leave the sound.

While steelhead are susceptible to being eaten by a few species of birds, their primary predators appear to be harbor seals. These findings are supported by a new study that placed acoustic receivers on seals and observed that some of the transmitters embedded in steelhead ended up where the seals hang out, suggesting that the fish were probably eaten.

In a different kind of tagging study, Canadian researchers placed smaller passive integrated transponder (PIT) tags in a large number of coho salmon and attached devices to read the PIT tags on coho salmon.

“What is most interesting to date,” states a new report from the Pacific Salmon Foundation,“ (PDF 4 mb), “is that we only have confirmed feeding on tagged coho salmon by four of the 20 seals equipped with receivers. This suggests that feeding on juvenile salmon may be an opportunistic behavior acquired by a limited number of seals.”

New studies are underway to confirm steelhead predation by looking at fecal samples from seals in South Puget Sound. Researchers hope to figure out what the seals are eating and estimate steelhead consumption.

As I mentioned at the outset of this blog post, it may be more than a simple case of seals eating steelhead. For one thing, seal populations may have increased while their other food choices have decreased. Would the seals be eating as many steelhead if Puget Sound herring populations were close to their historical averages?

Other factors may be making young steelhead vulnerable to predation. A leading candidate is a parasite called Nanophyetus salmincola, which can infest steelhead and perhaps increase their risk of predation. The parasite’s life cycle requires a snail and a warm-blooded animal, as I described in a story I wrote for the Encyclopedia of Puget Sound — part of a larger piece about disease as a powerful ecological force. Anyway, the snail is found only in streams in South Puget Sound, which might help explain why steelhead deaths are higher among these South Sound populations.

Experiments are underway to compare the survival of two groups of identical steelhead, one group infested with Nanophyetus and one not.

Depending on funding and proper design, another experiment could test whether treating a stream to temporarily eliminate the snail — an intermediate host — could increase the survival of steelhead. If successful, treating streams to remove these snails could be one way of helping the steelhead. For these and other approved and proposed studies, check out the Marine Survival Project’s “2015-2017 Research Work Plan” (PDF 9.3 mb).

Other factors under review that could play a role in steelhead survival are warming temperatures and pollution in Puget Sound, which could help determine the amount and type of plankton available for steelhead and salmon. Could a shift in plankton result in less food for the small fish? It’s a major question to be answered.

I’ve mentioned in Water Ways (3/15/2010) that transient killer whales, which eat seals, sea lions and harbor porpoises, may be helping their distant cousins, the Southern Resident killer whales, which eat fish. Those smaller marine mammals compete for the adult salmon eaten by the Southern Residents. By clearing out some of those competitors, the transients could be leaving more salmon for the Southern Residents.

It may be too early to draw any firm conclusions, Michael Schmidt told me, but transient killer whales may be helping steelhead as well. Last year, when transients ventured into South Puget Sound and stayed longer than usual, the survival rate for steelhead from the nearby Nisqually River was the highest it has been in a long time.

Were the whales eating enough seals to make a difference for steelhead, or were the seals hiding out and not eating while the whales were around. Whether there were benefits for the steelhead, we could be seeing what happens when a major predator (orcas) encounters an abundance of prey (seals).

Hormonal studies link orca miscarriages to low chinook salmon runs

An orca mother named Calypso (L-94) nurses her young calf in this high-resolution photo
An orca mother named Calypso (L-94) nurses her young calf in this high-resolution photo taken from a drone. Lactation takes an energetic toll on orca moms. Future images may reveal whether Calypso is getting enough food to support herself and her calf.
Photo: NOAA Fisheries, Vancouver Aquarium, under NMFS permit and FAA flight authorization.

It is fairly well known that the three pods of killer whales that frequent Puget Sound are listed as endangered under the Endangered Species Act. It is also well known that their primary prey — chinook salmon — are listed as threatened.

It can’t be good that the whales are struggling to find enough to eat, but we are just beginning to learn that the situation could be dire for orca females who become pregnant and need to support a growing fetus during times of a food shortage.

Sam Wasser, a researcher known for figuring out an animal’s condition from fecal samples, recently reported that about two-thirds of all orca pregnancies end in miscarriage. And of those miscarriages, nearly one-third take place during the last stage of pregnancy — a dangerous situation for the pregnant female.

In a story published today in the Encyclopedia of Puget Sound, I report on Sam’s latest studies, along with other work by a team of biologists who are using unmanned aircraft (drones) to keep track of the physical condition of the Southern Resident orcas, including pregnant moms.

Sam’s latest study involves measuring hormones in killer whales, which can tell us a lot about a whale’s condition. The story of how hormones change under varying conditions is a little complicated, but I hope I was able to explain in my article how this works. When adding the effects of toxic chemicals that mimic hormones, we begin to understand the conditions that may be critical to the whales’ long-term survival or their ultimate extinction.

One longtime assumption, which may be shot down by the hormone studies, is that the whales’ most difficult time for food comes in winter, when salmon are generally scarce. These new studies by Sam and his colleagues suggest that the greatest problem comes in the spring, when the whales return to Puget Sound to discover that spring runs of chinook salmon can no longer be found — at least not in significant numbers.

The work with a drone carrying a high-resolution camera is providing precise measurements about the length and width of each killer whale. Pregnant females are especially interesting, and it will be important to document whether physical changes observed in the drone study can be correlated with hormonal changes seen in the other study.

“We’ve moved toward some great sophisticated technology,” Lynne Barre told me. “These great technologies combined can tell us more than any one method can … such as when and where food limitations might be affecting their health and reproduction.”

Lynne heads NOAA’s Protected Resources Division in Seattle and oversees recovery efforts for the endangered Southern Residents.

By the end of this year, NOAA is expected to release its five-year status report on the Southern Resident orcas. In addition to reporting on many new findings, the document will re-examine the risk of extinction for these killer whales and consider whether actions proposed to help them have been carried out.

Last year, the Southern Residents were listed among eight endangered species across the country that are headed for extinction unless recovery actions can be successful. The eight, selected in part because of their high profiles, are known as “Species in the Spotlight.” In February, five-year action plans were released for all eight species.

The plan called “Priority Actions for Southern Resident Killer Whales” (PDF 2 mb) focuses on three primary factors affecting the whales’ survival: a shortage of food, high levels of toxic chemicals and effects of vessels and noise. The concise 15-page document describes some of the work being carried out on behalf of the whales, although new ideas are coming forth all the time.

Amusing Monday: Mermaids-to-be take lessons in special schools

A couple years ago, I was intrigued that a number of young women were making a living as professional mermaids. (See Water Ways, Jan. 27, 2014). Since then, the idea of becoming a mermaid for a day, a week or longer has caught on, with mermaid schools opening throughout the world.

Crimson Resort and Spa in the Philippines claims to be the first mermaid school in the world, but others were soon behind.

In New York, World of Swimming, a nonprofit corporation, inspires young people to become swimmers through lessons, swimming camps and other activities.

The first short video on this page features young mermaid swimmers accompanied by music as they swim about by swishing their tails. In the second video (also below), ABC News reporter Sara Haines takes the plunge in a first-person report to see what it is like to become a mermaid. The piece made the airwaves on Good Morning America.

In Vermont, reporter Sarah Tuff Dunn goes to mermaid school for the online publication “Seven Days” and is thoroughly enchanted after putting on her mermaid tail with its built-in swim fins.

“I felt the tail rise as if magically,” she wrote. “I released my hands from the wall and began to swim … like a mermaid. A doggy-paddling mermaid, mind you, and one who momentarily panicked when she realized she couldn’t scissor-kick her legs.”

Sarah, who soon catches on to swimming like a dolphin, discusses the risks of drowning with one’s legs tied together, and she explains why mermaid schools tend to emphasize safety.

What I find interesting about this mermaid trend is that children are getting excited about swimming. Being a mermaid or merman expands their confidence as they hold their breath under water for longer periods of time while building up their muscles for what could become a lifelong interest in aquatic sports — or at least some basic survival skills.

For those who operate or would like to operate a mermaid school, there is a newly formed International Mermaid Swimmers Instructors Association.

Other mermaid schools:

Bill could increase risks of alien species invasions in Puget Sound waters

Congress is on the verge of passing a law that would open a door for invasive species to sneak into Puget Sound from San Francisco Bay — known as the most infested waterway in the country.

The proposed legislation, supported by the shipping industry, is focused on reducing regulations surrounding the release of ballast water, which large ships use to maintain stability. Environmental groups and officials from at least nine states have voiced their opposition to the proposal, saying it could result in long-term damage to coastal and Great
Lakes ecosystems.

Ballast discharge from a ship Photo: Coast Guard
Ballast discharge from a ship
Photo: Coast Guard

Ballast water doesn’t get much attention in the media, but it has been associated with the transfer of invasive species throughout the world. Ships often take on ballast water at ports where they unload their cargo before moving to their next destination for a new load. As ships take on cargo, they discharge ballast water from the previous location — along with any organisms that hitched a ride.

Introduced species may multiply, displace native species and disrupt the food web. Lacking natural predators, some invasive species have been known to grow out of control, taking over beaches or underwater areas.

Rules and more rules

To reduce the risk of invasive species, the U.S. Coast Guard requires vessels from foreign countries to exchange their ballast water at sea before entering U.S. waters. Studies have shown that most organisms living out in the ocean don’t survive in coastal waters, and vice versa. So it is less risky for Puget Sound to receive ballast water picked up well off the coast than from another coastal inlet.

Ships that don’t discharge ballast water don’t need to comply with the Coast Guard’s ballast-exchange rule, nor do any ships transiting the U.S. coast, such as those coming into Puget Sound from California.

For years, fears have been growing that Puget Sound will become invaded by species that could alter sea life as we know it today. San Francisco Bay is dominated by more than 200 non-native species, including the European green crab and the Asian clam — both of which have caused enormous economic losses to the shellfish industry in various locations.

Green crab Photo: USGS
Green crab // Photo: USGS

In contrast, Puget Sound has become home to an identified 74 non-native marine species, although early introductions of exotic plankton — including some that produce toxins — could have gone unnoticed.

In reaction to growing concerns about invasive species, the Washington Legislature passed a law in 2000 that requires ballast exchange for ships arriving from anywhere outside a “common waters” zone. That’s an area from the Columbia River to just north of Vancouver, B.C. Consequently, ships from California that intend to release ballast water into Puget Sound must first exchange their ballast water at least 50 miles off the coast.

While the exchange of ballast water has been relatively effective in controlling the release of non-native species, the technique has always been considered an interim measure. Treating ballast water to kill organisms has been the long-term goal — and that’s where the confusion and frustration begins.

The International Maritime Organization has one treatment standard nearing final adoption for ships throughout the world. The Coast Guard says the IMO requirement to eliminate “viable” organisms — those able to reproduce — is too risky. The Coast Guard requires that organisms be killed. States may choose to issue their own standards, and California has proposed the most stringent treatment standards of all. Still, most of these standards are essentially on hold pending testing and certification of specific treatment systems.

Shipping companies say all these costly and conflicting rules are too difficult to navigate for businesses dealing in interstate and international commerce. But that’s not all the rules they may face.

The Environmental Protection Agency became involved in ballast water in 2008, after federal courts ruled that the shipping industry is not exempt from the Clean Water Act. The EPA then came up with a “vessel general permit” for ballast water and other discharges from ships, a permit that was challenged twice by environmental groups. Each time, the courts ruled against the EPA.

The latest EPA permit failed to require the “best available technology” for ballast water treatment, failed to set numerical standards, failed to require monitoring, and failed to meet other provisions of the Clean Water Act, according to a ruling handed down in October (PDF 6.4 mb) by the Second Circuit Court of Appeals in New York. A revised permit is now in the works.

Legislation and politics

That brings us to the controversial legislation, called the Vessel Incidental Discharge Act, or VIDA. The essence of the bill is to eliminate state jurisdiction and any oversight by the EPA. Upon enactment, only Coast Guard rules would apply, and ships from San Francisco would no longer need to exchange their ballast water before coming into Washington or Oregon. For an in-depth understanding of the bill, read the Congressional Research Service report (PDF 3.5 mb).

The lack of coastwise ballast exchange is the biggest concern of officials along the West Coast, where similar state requirements are in effect. In California, the problem is that VIDA would allow the spread of invasive species from San Francisco Bay to more pristine bays, such as Humboldt Bay. While the bill allows states to petition for regulations to deal with local conditions, nobody knows how that would work. The petition would need scientific proof that the local regulations are needed and feasible, and the Coast Guard would have 90 days to make a decision.

In the U.S. House of Representatives, VIDA became attached to the National Defense Authorization Act, which was approved. NDAA is a “must-pass” bill to authorize military funding and many other things associated with national defense.

The Senate version of the defense bill does not contain the VIDA provision. While the two bills are technically in a conference committee, insiders tell me that top leaders in the House and Senate must engage in political battles over the critical defense bill and try to work out a compromise to gain approval in both houses.

The shipping industry is lobbying hard for VIDA to stay in the compromise bill, while environmentalists want to take it out. We may not know which of the related and unrelated riders on the bill will survive until the bill is ready for congressional action.

In the Senate, Florida’s Sen. Marco Rubio was the original sponsor of the legislation when it was a stand-alone bill. Republicans would like him to get a win for the folks back home, where Rubio is engaged in a tight election race. (See Dan Friedman’s story in Fortune.)

President Obama, threatening a veto, lists VIDA as one of many provisions that he opposes in the House version of the National Defense Authorization Act. See Statement of Administration Policy (PDF 1.2 mb). Nobody thinks he would veto the bill over ballast water alone.

Many shipping industry officials say they don’t object to stringent treatment standards. They only wish to avoid multiple, confusing standards. They also would like some assurance that the standards are technically feasible and won’t require ongoing costly changes to equipment.

Environmentalists say they don’t want to lose the authority of the Clean Water Act, which allows average citizens to bring lawsuits to protect the environment.

“The Clean Water Act is a tried and true approach for controlling water pollution problems,” said Nina Bell of Northwest Environmental Advocates in Portland. Her group was among those that brought the lawsuit against the EPA (PDF 6.8 mb).

“I think we are poised to make some real progress,” Nina told me. “VIDA opts instead to take away authority from the Environmental Protection Agency and give it to the Coast Guard, which has no environmental expertise. The Coast Guard has a lot of priorities, such as keeping people safe on ships and protecting our waters, but this is not one of them.”

The EPA has clear authority to regulate ballast water and limit the spread of invasive species, she said. If the EPA were to issue strong requirements, the states would not need their own regulations.

New Bucklin Hill Bridge helps restore habitat in Clear Creek estuary

Tidal waters in Silverdale flow smoothly in and out of Clear Creek estuary, passing under a new 240-foot-long bridge — a massive structure that has replaced a pair of six-foot culverts.

New Bucklin Hill Bridge Photo: C. Dunagan
New Bucklin Hill Bridge // Photo: C. Dunagan

I visited the site this afternoon, walking over to the bridge from Old Mill Park, and I found the changes startling. Flows of freshwater from Clear Creek joins saltwater that trickles through tidal channels from Dyes Inlet. Tidal shifts are reshaping the estuary, flushing out trapped sediment and leaving deposits of gravel of varying size. When the fall rains come, salmon will be able to linger in the estuary upstream or downstream of the bridge before moving up into the watershed.

Twin culverts before construction begins. Photo: Kitsap County
Twin culverts before construction
Photo: Kitsap County

Traffic across the estuary was shut off for construction a little more than a year ago. Now county officials are planning to celebrate the opening of the new bridge on Friday of next week (July 22). The ceremony, led by Kitsap County Commissioner Ed Wolfe, will begin at 10 a.m. on the east end of the bridge. A Marine Corps honor guard will present the colors, and the Central Kitsap High School marching band will perform.

“We encourage the community to join us in celebrating this special occasion,” Ed stated in a news release. “The new bridge not only addresses traffic needs, but provides additional non-motorized enhancements as well as restoring Clear Creek estuary with the removal of culverts.”

Parking will be available at the former Albertson’s/Haggen grocery store parking lot near the intersection of Bucklin Hill and Mickelberry roads.

The $19.4 million construction project is said to be the largest project of its kind ever undertaken by the county. The bridge allows the roadway to be widened from two to four lanes with a new left-turn lane at Levin Road and a center two-way turn lane elsewhere in the area. The project adds new bike lanes, sidewalks and pedestrian overlooks.

Looking upstream from under the new bridge. Photo: C. Dunagan
Looking upstream from under the new bridge
Photo: C. Dunagan

Kitsap County Public Works has posted a large number of photos showing the progress of construction on its Bucklin Hill Bridge project page.

After the bridge opens, the contractor, Granite Construction, will continue to finish various aspects of the project. Occasional traffic delays can be expected, according to county officials.

Chris Butler-Minor, a master’s degree candidate at Portland State University, is studying the ecological changes resulting from the project with the help of volunteers. They are collecting water samples and monitoring sediments, vegetation and invertebrates.

“It’s a yearlong inconvenience but the outcome will be improved transportation, improved bike and pedestrian access, and the salmon are going to love it,” Chris was quoted as saying in a story by Kitsap Sun reporter Ed Friedrich.

The new Bucklin Hill Bridge opens up the estuary. Photo: C. Dunagan
The new Bucklin Hill Bridge opens up the estuary. // Photo: C. Dunagan

Amusing Monday: Cats can be trained to enjoy water and other things

I grew up with cats and have lived with cats for most of my life. I can’t recall that any of my feline friends were fond of water. But then nobody I know has ever taken the time to teach them to surf on the back of a dog, ride the waves with a human or even learn the basic command to “stay.”

These things are exactly what long-time dog trainer Robert Dollwet has done after deciding he wanted to train cats. After moving from California to Australia in 2010, Robert went to a local animal shelter and adopted a lively kitten he named Didga, short for Didgeridoo. As he proceeded through the training, Robert began sharing his methods on a YouTube channel he named “CATMANTOO.” Later, he added another kitten, Boomer, to his family.

The first video on this page shows Didga performing a stunt that Robert calls “Ice surfing.” That’s because the dog (who belongs to a client involved in dog training) is named Ice. Robert says many of the feats shown in his videos take weeks or months for the animals to learn.

“Please don’t try the things you see at home,” he says in a note attached to the video. “I’d feel bad if your cat was hurt or forced into doing something they don’t want to do. Watch my tutorials to learn how to teach your cat.”

The second video, released in April, shows Boomer riding on a surfboard on a river, as Robert gently paddles around.

“We’ve been doing this since he was a kitten,” Robert writes in the notes. “I gave him lots of food while he rides on the surfboard. He’s 11 months now, and he is so comfortable, it’s about that time to take his surfboard riding skills to the next level — by actual surfing on a wave in the ocean (with life vest, of course). Stay tuned.”

The third video is an amusing story called “Didga Dreams BIG,” which actually shows off this cat’s repertoire of tricks and stunts. I like the way Robert demonstrates his cats’ abilities by telling little stories in some of the videos — such as Didga’s skateboard trip around the beach town of Coolangatta, where he lives in Australia. See “World’s Best Skateboarding Cat!”

Other water-related videos:

You can check out the helpful YouTube tutorials on CATMANTOO to learn some basic cat skills that I believe might be helpful in daily life:

By the way, you can follow Robert and his animals on his Facebook page, also called CATMANTOO.