Category Archives: Pollution and spills

Finding answers for dangerous decline of Puget Sound steelhead

Harbor seals have become prime suspects in the deaths of millions of young steelhead trout that die each year in Puget Sound, but the seals may not be working alone.

Trends

Disease and/or various environmental factors could play a part, perhaps weakening the young steelhead as they begin their migratory journey from the streams of Puget Sound out to the open ocean. Something similar is happening to steelhead on the Canadian side of the border in the Salish Sea.

More than 50 research projects are underway in Puget Sound and Georgia Strait to figure out why salmon runs are declining — and steelhead are a major focus of the effort. Unlike most migratory salmon, steelhead don’t hang around long in estuaries that can complicate the mortality investigation for some species.

The Salish Sea Marine Survival Project, launched by the Washington Department of Fish and Wildlife and Puget Sound Partnership, is halfway through its five-year term, according to Michael Schmidt of Long Live the Kings, which coordinates the effort in the U.S. The project involves at least 60 organizations, including state and federal agencies, Indian tribes and universities.

A new report on research findings for steelhead (PDF 9.8 mb) describes the most significant results to date for our official state fish, which was listed as “threatened” in 2007. While steelhead populations on the Washington Coast and Columbia River have rebounded somewhat since their lowest numbers in the 1980s, steelhead in the Salish Sea remain at historical lows — perhaps 10 percent of their previous average.

“Because steelhead are bigger and move fast through the system, they are easier to study (than other salmon species),” Michael told me. “It has been a lot easier to feel confident about what you are finding.”

Abundance

Steelhead can be imbedded with tiny acoustic transmitters, which allow them to be tracked by acoustic receivers along their migration routes to the ocean. It appears that the tagged fish survive their freshwater journey fairly well, but many soon disappear once they reach Puget Sound. The longer they travel, the more likely they are to perish before they leave the sound.

While steelhead are susceptible to being eaten by a few species of birds, their primary predators appear to be harbor seals. These findings are supported by a new study that placed acoustic receivers on seals and observed that many of the transmitters embedded in steelhead ended up where the seals hang out, suggesting that the fish were probably eaten.

In a different kind of tagging study, Canadian researchers placed smaller passive integrated transponder (PIT) tags in a large number of coho salmon and attached devices to read the PIT tags on coho salmon.

“What is most interesting to date,” states a new report from the Pacific Salmon Foundation,“ (PDF 4 mb), “is that we only have confirmed feeding on tagged coho salmon by four of the 20 seals equipped with receivers. This suggests that feeding on juvenile salmon may be an opportunistic behavior acquired by a limited number of seals.”

New studies in Puget Sound are underway to confirm steelhead predation by looking at fecal samples from seals and figuring out just what the seals are eating during critical times of survival for steelhead.

As I mentioned at the outset of this blog post, it may be more than a simple case of seals eating steelhead. For one thing, seal populations may have increased while their other food choices have decreased. Would the seals be eating as many steelhead if Puget Sound herring populations were close to their historical averages?

Other factors may be making young steelhead vulnerable to predation. A leading candidate is a parasite called Nanophyetus salmincola, which can infest steelhead and perhaps increase their risk of predation. The parasite’s life cycle requires a snail and a warm-blooded animal, as I described in a story I wrote for the Encyclopedia of Puget Sound — part of a larger piece about disease as a powerful ecological force. Anyway, the snail is found only in streams in South Puget Sound, which might help explain why steelhead deaths are higher among these South Sound populations.

Experiments are underway to compare the survival of two groups of identical steelhead, one group infested with Nanophyetus and one not.

Depending on funding and proper design, another experiment could test whether treating a stream to temporarily eliminate the snail — an intermediate host — could increase the survival of steelhead. If successful, treating streams to remove these snails could be one way of helping the steelhead. For these and other approved and proposed studies, check out the Marine Survival Project’s “2015-2017 Research Work Plan” (PDF 9.3 mb).

Other factors under review that could play a role in steelhead survival are warming temperatures and pollution in Puget Sound, which could help determine the amount and type of plankton available for steelhead and salmon. Could a shift in plankton result in less food for the small fish? It’s a major question to be answered.

I’ve mentioned in Water Ways (3/15/2010) that transient killer whales, which eat seals, sea lions and harbor porpoises, may be helping their distant cousins, the Southern Resident killer whales, which eat fish. Those smaller marine mammals compete for the adult salmon eaten by the Southern Residents. By clearing out some of those competitors, the transients could be leaving more salmon for the Southern Residents.

It may be too early to draw any firm conclusions, Michael Schmidt told me, but transient killer whales may be helping steelhead as well. Last year, when transients ventured into South Puget Sound and stayed longer than usual, the survival rate for steelhead from the nearby Nisqually River was the highest it has been in a long time.

Were the whales eating enough seals to make a difference for steelhead, or were the seals hiding out and not eating while the whales were around. Whether there were benefits for the steelhead, we could be seeing what happens when a major predator (orcas) encounters an abundance of prey (seals).

Hormonal studies link orca miscarriages to low chinook salmon runs

An orca mother named Calypso (L-94) nurses her young calf in this high-resolution photo
An orca mother named Calypso (L-94) nurses her young calf in this high-resolution photo taken from a drone. Lactation takes an energetic toll on orca moms. Future images may reveal whether Calypso is getting enough food to support herself and her calf.
Photo: NOAA Fisheries, Vancouver Aquarium, under NMFS permit and FAA flight authorization.

It is fairly well known that the three pods of killer whales that frequent Puget Sound are listed as endangered under the Endangered Species Act. It is also well known that their primary prey — chinook salmon — are listed as threatened.

It can’t be good that the whales are struggling to find enough to eat, but we are just beginning to learn that the situation could be dire for orca females who become pregnant and need to support a growing fetus during times of a food shortage.

Sam Wasser, a researcher known for figuring out an animal’s condition from fecal samples, recently reported that about two-thirds of all orca pregnancies end in miscarriage. And of those miscarriages, nearly one-third take place during the last stage of pregnancy — a dangerous situation for the pregnant female.

In a story published today in the Encyclopedia of Puget Sound, I report on Sam’s latest studies, along with other work by a team of biologists who are using unmanned aircraft (drones) to keep track of the physical condition of the Southern Resident orcas, including pregnant moms.

Sam’s latest study involves measuring hormones in killer whales, which can tell us a lot about a whale’s condition. The story of how hormones change under varying conditions is a little complicated, but I hope I was able to explain in my article how this works. When adding the effects of toxic chemicals that mimic hormones, we begin to understand the conditions that may be critical to the whales’ long-term survival or their ultimate extinction.

One longtime assumption, which may be shot down by the hormone studies, is that the whales’ most difficult time for food comes in winter, when salmon are generally scarce. These new studies by Sam and his colleagues suggest that the greatest problem comes in the spring, when the whales return to Puget Sound to discover that spring runs of chinook salmon can no longer be found — at least not in significant numbers.

The work with a drone carrying a high-resolution camera is providing precise measurements about the length and width of each killer whale. Pregnant females are especially interesting, and it will be important to document whether physical changes observed in the drone study can be correlated with hormonal changes seen in the other study.

“We’ve moved toward some great sophisticated technology,” Lynne Barre told me. “These great technologies combined can tell us more than any one method can … such as when and where food limitations might be affecting their health and reproduction.”

Lynne heads NOAA’s Protected Resources Division in Seattle and oversees recovery efforts for the endangered Southern Residents.

By the end of this year, NOAA is expected to release its five-year status report on the Southern Resident orcas. In addition to reporting on many new findings, the document will re-examine the risk of extinction for these killer whales and consider whether actions proposed to help them have been carried out.

Last year, the Southern Residents were listed among eight endangered species across the country that are headed for extinction unless recovery actions can be successful. The eight, selected in part because of their high profiles, are known as “Species in the Spotlight.” In February, five-year action plans were released for all eight species.

The plan called “Priority Actions for Southern Resident Killer Whales” (PDF 2 mb) focuses on three primary factors affecting the whales’ survival: a shortage of food, high levels of toxic chemicals and effects of vessels and noise. The concise 15-page document describes some of the work being carried out on behalf of the whales, although new ideas are coming forth all the time.

Bill could increase risks of alien species invasions in Puget Sound waters

Congress is on the verge of passing a law that would open a door for invasive species to sneak into Puget Sound from San Francisco Bay — known as the most infested waterway in the country.

The proposed legislation, supported by the shipping industry, is focused on reducing regulations surrounding the release of ballast water, which large ships use to maintain stability. Environmental groups and officials from at least nine states have voiced their opposition to the proposal, saying it could result in long-term damage to coastal and Great
Lakes ecosystems.

Ballast discharge from a ship Photo: Coast Guard
Ballast discharge from a ship
Photo: Coast Guard

Ballast water doesn’t get much attention in the media, but it has been associated with the transfer of invasive species throughout the world. Ships often take on ballast water at ports where they unload their cargo before moving to their next destination for a new load. As ships take on cargo, they discharge ballast water from the previous location — along with any organisms that hitched a ride.

Introduced species may multiply, displace native species and disrupt the food web. Lacking natural predators, some invasive species have been known to grow out of control, taking over beaches or underwater areas.

Rules and more rules

To reduce the risk of invasive species, the U.S. Coast Guard requires vessels from foreign countries to exchange their ballast water at sea before entering U.S. waters. Studies have shown that most organisms living out in the ocean don’t survive in coastal waters, and vice versa. So it is less risky for Puget Sound to receive ballast water picked up well off the coast than from another coastal inlet.

Ships that don’t discharge ballast water don’t need to comply with the Coast Guard’s ballast-exchange rule, nor do any ships transiting the U.S. coast, such as those coming into Puget Sound from California.

For years, fears have been growing that Puget Sound will become invaded by species that could alter sea life as we know it today. San Francisco Bay is dominated by more than 200 non-native species, including the European green crab and the Asian clam — both of which have caused enormous economic losses to the shellfish industry in various locations.

Green crab Photo: USGS
Green crab // Photo: USGS

In contrast, Puget Sound has become home to an identified 74 non-native marine species, although early introductions of exotic plankton — including some that produce toxins — could have gone unnoticed.

In reaction to growing concerns about invasive species, the Washington Legislature passed a law in 2000 that requires ballast exchange for ships arriving from anywhere outside a “common waters” zone. That’s an area from the Columbia River to just north of Vancouver, B.C. Consequently, ships from California that intend to release ballast water into Puget Sound must first exchange their ballast water at least 50 miles off the coast.

While the exchange of ballast water has been relatively effective in controlling the release of non-native species, the technique has always been considered an interim measure. Treating ballast water to kill organisms has been the long-term goal — and that’s where the confusion and frustration begins.

The International Maritime Organization has one treatment standard nearing final adoption for ships throughout the world. The Coast Guard says the IMO requirement to eliminate “viable” organisms — those able to reproduce — is too risky. The Coast Guard requires that organisms be killed. States may choose to issue their own standards, and California has proposed the most stringent treatment standards of all. Still, most of these standards are essentially on hold pending testing and certification of specific treatment systems.

Shipping companies say all these costly and conflicting rules are too difficult to navigate for businesses dealing in interstate and international commerce. But that’s not all the rules they may face.

The Environmental Protection Agency became involved in ballast water in 2008, after federal courts ruled that the shipping industry is not exempt from the Clean Water Act. The EPA then came up with a “vessel general permit” for ballast water and other discharges from ships, a permit that was challenged twice by environmental groups. Each time, the courts ruled against the EPA.

The latest EPA permit failed to require the “best available technology” for ballast water treatment, failed to set numerical standards, failed to require monitoring, and failed to meet other provisions of the Clean Water Act, according to a ruling handed down in October (PDF 6.4 mb) by the Second Circuit Court of Appeals in New York. A revised permit is now in the works.

Legislation and politics

That brings us to the controversial legislation, called the Vessel Incidental Discharge Act, or VIDA. The essence of the bill is to eliminate state jurisdiction and any oversight by the EPA. Upon enactment, only Coast Guard rules would apply, and ships from San Francisco would no longer need to exchange their ballast water before coming into Washington or Oregon. For an in-depth understanding of the bill, read the Congressional Research Service report (PDF 3.5 mb).

The lack of coastwise ballast exchange is the biggest concern of officials along the West Coast, where similar state requirements are in effect. In California, the problem is that VIDA would allow the spread of invasive species from San Francisco Bay to more pristine bays, such as Humboldt Bay. While the bill allows states to petition for regulations to deal with local conditions, nobody knows how that would work. The petition would need scientific proof that the local regulations are needed and feasible, and the Coast Guard would have 90 days to make a decision.

In the U.S. House of Representatives, VIDA became attached to the National Defense Authorization Act, which was approved. NDAA is a “must-pass” bill to authorize military funding and many other things associated with national defense.

The Senate version of the defense bill does not contain the VIDA provision. While the two bills are technically in a conference committee, insiders tell me that top leaders in the House and Senate must engage in political battles over the critical defense bill and try to work out a compromise to gain approval in both houses.

The shipping industry is lobbying hard for VIDA to stay in the compromise bill, while environmentalists want to take it out. We may not know which of the related and unrelated riders on the bill will survive until the bill is ready for congressional action.

In the Senate, Florida’s Sen. Marco Rubio was the original sponsor of the legislation when it was a stand-alone bill. Republicans would like him to get a win for the folks back home, where Rubio is engaged in a tight election race. (See Dan Friedman’s story in Fortune.)

President Obama, threatening a veto, lists VIDA as one of many provisions that he opposes in the House version of the National Defense Authorization Act. See Statement of Administration Policy (PDF 1.2 mb). Nobody thinks he would veto the bill over ballast water alone.

Many shipping industry officials say they don’t object to stringent treatment standards. They only wish to avoid multiple, confusing standards. They also would like some assurance that the standards are technically feasible and won’t require ongoing costly changes to equipment.

Environmentalists say they don’t want to lose the authority of the Clean Water Act, which allows average citizens to bring lawsuits to protect the environment.

“The Clean Water Act is a tried and true approach for controlling water pollution problems,” said Nina Bell of Northwest Environmental Advocates in Portland. Her group was among those that brought the lawsuit against the EPA (PDF 6.8 mb).

“I think we are poised to make some real progress,” Nina told me. “VIDA opts instead to take away authority from the Environmental Protection Agency and give it to the Coast Guard, which has no environmental expertise. The Coast Guard has a lot of priorities, such as keeping people safe on ships and protecting our waters, but this is not one of them.”

The EPA has clear authority to regulate ballast water and limit the spread of invasive species, she said. If the EPA were to issue strong requirements, the states would not need their own regulations.

Time to rethink how contaminants get into Puget Sound food web

For years, I have been told the story of how PCBs and other toxic chemicals cling to soil particles and tiny organic debris as polluted water washes off the land.

Richard Henderson of the Skagit River System Cooperative uses a beach seine to catch juvenile chinook salmon near the Skagit River delta. Fish from this rural area were found to be less contaminated than fish taken from urban areas. Photo: WDFW
Richard Henderson of the Skagit River System Cooperative uses a beach seine to catch juvenile chinook salmon near the Skagit River delta. Fish from this rural area were found to be less contaminated than fish taken from urban bays. // Photo: WDFW

Eventually, the PCB-laden particles are carried into Puget Sound, where they settle to the bottom. From there, they begin working their way into marine animals, disrupting their normal functions — such as growth, immune response and reproduction.

The idea that contaminants settle to the bottom is the story I’ve been told for as long as I can remember, a story long accepted among the scientific community in Puget Sound and across the U.S. So I was surprised when I heard that leading scientists who study toxic chemicals in Puget Sound were questioning this long-held idea about how dangerous chemicals get into the food web.

Puget Sound may be different from other waterways, they said.

“When you look at the concentrations in herring and the concentrations in the sediments, something does not line up,” Jim West told me. “The predictions are way off. We think there is a different mechanism.”

Jim is a longtime researcher for the Washington Department of Fish and Wildlife. I have worked with him through the years on various stories about the effects of contaminants on marine organisms. But now he was talking about changing the basic thinking about how chemicals are transferred through the food web.

Jim postulates that many of these PCB-laden particles that wash down with stormwater never sink to the bottom of Puget Sound. Instead, they are taken up by tiny organisms floating in the water. The organisms, including bacteria and phytoplankton, are eaten by larger plankton and become incorporated into fish and other free-swimming creatures — the pelagic food web.

Jim presented his findings at the Salish Sea Ecosystem Conference last month in Vancouver, B.C. Sandie O’Neill, another WDFW researcher, presented other new information about the transfer of contaminants through the food web — from plankton to herring to salmon to killer whales.

My stories about the studies conducted by Jim and Sandie (with help from a team of skilled scientists) were published today in the Encyclopedia of Puget Sound, where you can read them. These are the first of at least 10 story packages to be to written by a team of reporters working for the Puget Sound Institute.

The Salish Sea conference was attended by more than 1,100 people, including 450 researchers and policymakers who talked about new information related to the Salish Sea — which includes Puget Sound in Washington, the Strait of Georgia in British Columbia and the Strait of Juan de Fuca on the U.S./Canada border.

When I first heard about Jim West’s idea regarding the fate of toxic chemicals circulating in Puget Sound, I thought one result might be to shift restoration dollars away from cleaning up sediments to cleaning up stormwater. After all, if the majority of PCBs aren’t getting into the sediments, why spend millions of dollars cleaning up the stuff on the bottom? Why not devote that money to cleaning up stormwater?

In fact, the worst of the contaminated sediments in Puget Sound have been cleaned up, with some cleanups now under way. That helps to ensure that toxic chemicals won’t get re-suspended in the water and taken up into the pelagic food web all over again. A few hotspots of contaminated sediments may still need some attention.

As far as putting the focus on stormwater, that’s exactly what the Puget Sound Partnership has done with support from the Department of Ecology and other clean-water agencies. It is now well established that the key to reducing pollution in Puget Sound is to keep toxic chemicals out of stormwater or else create settling ponds, rain gardens, pervious pavement and other methods to capture the PCB-laden particles before they reach Puget Sound.

I noticed that Ecology just today announced a new round of regulations to control stormwater in King, Pierce, Snohomish and Clark counties. Proposed changes include updating stormwater programs for new construction projects and for redevelopment. An appendix will describe Seattle’s plan to reduce stormwater pollution in the Lower Duwamish River, where PCBs are a major problem. For more on stormwater regulations, go to Ecology’s website.

As Sandie told me during our discussions, all the work on fixing habitat in Puget Sound streams is not enough if we can’t control the discharge of PCB’s — which were banned in the 1970s — along with newer contaminants still working their way into our beloved waterway. Any measure of healthy habitat must include an understanding of the local chemistry.

Skokomish restoration makes progress in federal funding arena

UPDATE: June 12, 2016
The Skokomish River ecosystem restoration project, as proposed by the Army Corps of Engineers, remains on track. The House Transportation and Infrastructure Committee on May 25 unanimously endorsed the Water Resources Development Act, which would authorize the project. The legislation must still be approved by the full House and Senate.
—–

After decades of in-depth studies and anxious waiting, restoration of the Skokomish River ecosystem took a major step forward today, when a committee of the U.S. Senate endorsed the $20-million effort as part of a larger legislative package.

Skok watershed

The Skokomish restoration was one of many projects that sailed through the Senate Environment and Public Works Committee as it passed a $9-billion authorization bill on a 19-1 vote. The bill must still be approved by the full Senate and House, but supporters of the Skokomish restoration were thrilled with the light at the end of the tunnel.

Rich Geiger, project engineer for the Mason Conservation District, has been shepherding the Skokomish effort for as long as I can remember. I asked him how it feels to finally see some action in Congress.

“It feels really really good,” he said slowly, emphasizing each word.

The restoration program consists of five separate projects along the Skokomish River. Although not designed for flood control, these projects for improving ecological health are expected to reduce flooding along one of the most frequently flooded rivers in the state.

The restoration effort has received support from far and wide. As Rich likes to point out, experts generally agree that Puget Sound cannot be restored without restoring Hood Canal, and Hood Canal cannot be restored without restoring the Skokomish River.

Sen. Patty Murray has been a strong advocate for the project.

“The waters of Hood Canal and Puget Sound are essential to the Washington state environment, economy, and our way of life,” the senator said in an email, “so I am proud to fight for investments in the restoration of the Skokomish River. This critical work will restore habitat and wetlands and improve fish passage, which in turn supports salmon recovery — all necessary to maintain our precious natural resources.”

U.S. Rep. Derek Kilmer, D-Gig Harbor, said improving the health of the Skokomish River would be a boon for Mason County and the entire region. He said he applauded the efforts of the Skokomish Watershed Action Team, the Skokomish Tribe and area residents who worked together to shape the restoration program.

“This project ensures we can better protect critical species like salmon … while restoring more natural areas for folks to explore,” Kilmer said in an email. “That will help bring more visitors to recreate in this watershed while protecting it for future generations.”

The $9-billion authorization bill, known as the Water Resources Development Act of 2016 (PDF 4.1 mb), includes money requested by the Army Corps of Engineers for water-related projects across the country. In additional to restoration efforts, the bill includes authorization of projects related to flood control, dredging, drinking water emergencies, water treatment and pipelines. For a summary of the bill see the report to the committee (PDF 284 kb).

The bipartisan endorsement and near-unanimous support offers hope that the needed money will be approved in a future appropriations bill tied to the budget, Rich Geiger told me. He is also optimistic that the 35-percent state/local match will be made available through state grants or a legislative appropriation.

“Now that have an approved plan, we are coming to Washington state with a funding request that is much larger than normal,” Geiger said. “This is a little unprecedented.”

The federal share for the project would be about $13 million and the state share nearly $7 million.

Some money has already been provided for engineering work, Rich said. If things go well, the final designs can be ready for the start of construction in October of 2019.

These four projects would come first:

Confluence levee removal: This levee was built with old cars at the confluence where the North Fork flows into the mainstem of the Skokomish. Some 5,000 feet of the levee would be removed. A small channel would be created to allow water from the mainstem to flow into the North Fork and return at the existing confluence. Large woody debris would help direct water into the channel. Estimated cost: $7.5 million.

Wetland restoration at river mile 9: The existing levee would be breached in four locations, and a new levee would be built some 200 to 300 feet farther away. The levee would allow for minor over-topping but would not increase the flood risk. Estimated cost: $2.4 million.

Wetland restoration near Grange: Larger breeches are planned for the levee near the Grange hall at river mile 7.5 to 8. A new levee, up to 10 feet tall and 2,900 feet long, would be constructed 1,200 feet farther back with no increase in flood risk. Locations are still under discussion. Estimate cost $3.3 million.

Side channel connection near Highway 101: An old remnant channel between river mile 4 and 5.6 would be restored to take water from the mainstem at high flows. Woody debris would help define the inlet and outlet to the channel, which would become a ponded wetland at low flows. Estimated cost: $3.1 million.

The fifth project would be constructed over two years in 2020-21:

Large woody debris: Upstream of the confluence with the North Fork, large woody debris would be installed. Large clusters of trees with root wads, as well as some single trees, would be placed between river mile 9 and 11, as measured from the estuary in Hood Canal. Estimated cost: $3.2 million.

The original plan for the Skokomish, as developed in an early report by the Army Corps of Engineers, called for more projects and would have cost closer to $40 million.

Some of those other projects are being funded through other programs, such as the Salmon Recovery Funding Board. For example, the reconnection of a stagnant section of Weaver Creek to the free-flowing Purdy Creek is scheduled for this summer using SRF Board money.

In addition, numerous man-made logjams are being planned to create salmon habitat, reduce sediment flows and stabilize the stream channel. Also, preliminary designs and discussions are underway to relocate Skokomish Valley Road, a main route into the Olympic Mountains. Moving the road would allow for the removal of levees, river bank restoration and a reconnection to about 60 acres of floodplain.

Amusing Monday:
You can vote for year’s best Eco-Comedy film

The Eco-Comedy Film Competition was created to get people thinking about the environment by reaching them through entertainment instead of a heavy-handed message.

“Clean Water” is the theme for this year’s competition, sponsored by The Nature Conservancy and American University’s Center for Environmental Filmmaking.

More than 80 short films were entered into this year’s contest. Everyone is eligible to vote online for the People’s Choice Award by selecting from among the seven finalists. Watch those seven videos on the Eco-Comedy Film Competition website, and vote using the form beneath the video players. Make sure you click in the lower right corner to go full screen. I’ve posted a couple of my favorites on this page, but please don’t let that influence your own choice.

The winning video will be selected by a panel of judges. The Grand Prize winner will be announced March 22 and will be awarded a $2,000 prize.

Last year, Patrick Webster won both the People’s Choice Award and the Grand Prize for his video “Dude! Or the Blissful Ingorance of Progress.”

Kitsap groundwater model points to promising future

Overall, the Kitsap Peninsula is expected to have enough water for people and fish for many years into the future, as long as the water is managed well, according to a groundwater model developed by the U.S. Geological Survey.

The model offers reassuring findings for residents of the Kitsap Peninsula. It is also encouraging to see local water, sewer and public works officials working together to plan for infiltrating stormwater along with recycling wastewater for irrigation. Those efforts will not only protect the peninsula’s water resources but will save money for water customers.

Drilling for water on the Kitsap Peninsula Kitsap Sun file photo
Drilling for water on the Kitsap Peninsula
Kitsap Sun file photo

Lonna Frans of the U.S. Geological Survey met this week with members of WaterPAK — the Water Purveyors of Association of Kitsap — to discuss the conclusions of a five-year, $1.4 million study of water resources across the Kitsap Peninsula. Lonna said a final written report should be available in about a month. (See website Kitsap GW model.)

The most impressive part of the groundwater model is the mapping of geology across the entire peninsula, based on more than 2,100 well-driller logs that describe the type of soil at various depths. Putting that information together provides a three-dimensional picture of the underground structure, including sand and gravel deposits, which contain water, along with layers of clay and compressed soils, which slow down the water movement.

By monitoring water levels in 66 wells over time and accounting for rainfall and groundwater withdrawals, the computer model provides a dynamic picture of what happens under various conditions. The model can be used to predict what will happen to Kitsap’s aquifers under various rainfall scenarios, including long periods of drought.

Map

Key

The model also can predict what will happen to streamflows under various rainfall scenarios. The Kitsap Peninsula has no mountain snowpack to supply the streams with water during dry summer months, so the water must come from slow-moving underground supplies.

Now that the model is complete, it can be run for almost any pattern of rainfall or drought that one wishes to dream up. For example, running the model with average rainfall and no pumping at all (close to a predevelopment condition) would bring the average groundwater level up about 25 feet — although groundwater levels in some places would be raised more than in other places.

Streamsflows under the no-pumping scenario would be an average of about 2 percent higher — although this would be difficult to measure with current instruments. Nobody would really notice the difference.

If pumping across the peninsula were increased by 15 percent, there would not be much difference in aquifers near the surface and only a two- or three-foot drop in aquifers around sea level. Streamflows would go down by a fraction of a percent but not enough to notice.

Decreasing groundwater recharge by 15 percent, such as paving over the landscape with new roads, houses and parking lots, would have a greater effect on streamflows.

Again, not all areas on the peninsula will see the same effects. The model can be used to zero in on specific streams and their watersheds — although the smaller the area of study, the less accurate the prediction is likely to be.

Bob Hunter, manager of Kitsap Public Utility District, said the model can be used to predict the effects that new wells would have on streamflows as the population grows. The model could advise managers whether it would be advisable to pump certain wells at certain times of the year and hold back at other times.

Kathleen Cahall, water resources manager for the city of Bremerton, said the model can also be used to make sure aquifer-recharge areas are protected and that industrial facilities that store large quantities of chemicals are not located where a spill could contaminate a major underground water supply.

Morgan Johnson, general manager of Silverdale Water District, said he would like to use the model to predict what will happen when highly treated effluent from the Central Kitsap Wastewater Treatment Plant is used to irrigate ball fields and other areas in Central Kitsap. Efforts between the water districts and Kitsap County might lead to greater infiltration of water and greater groundwater supplies to be pumped from existing wells throughout Central Kitsap.

The model was built on background information, which can be found in the report “Hydrogeologic Framework, Groundwater Movement, and Water Budget of the Kitsap Peninsula” (PDF 49.8 mb).

The USGS provided half the costs for the study. The other half was shared among Kitsap PUD; Silverdale Water District; West Sound Utility District; North Perry Water District; Manchester Water District; the cities of Bremerton, Port Orchard, Poulsbo and Gig Harbor; Washington Water, a private utility; and the Suquamish and Port Gamble S’Klallam tribes.

In September of 2014, I wrote about water resources for the series we called “Taking the Pulse of Puget Sound.” The story was called “Making sure there is enough water to go around.”

A chance to talk
on televison about the wonders of Puget Sound

More than 50 people came together at the beginning of this month in Washington, D.C., to share their stories and concerns about Puget Sound. The annual event is becoming known as Puget Sound Day.

The group included leaders from local government, tribes, non-profit groups, businesses and state agencies, noted U.S. Rep. Derek Kilmer, who organized the get-together and discussion about federal legislation and funding.

Kitsap County Commissioner Charlotte Garrido, who is involved in these issues, asked me to share my thoughts about Puget Sound on the public access television program “Commissioner’s Corner.” If you haven’t seen the show, you can view it on BKAT the next two Mondays at 8:30 p.m. and Tuesdays at 2 p.m., or click on the video above.

I have to say that speaking off the cuff in front of a television camera is a lot different from writing a story or blog post, but I was pleased to be invited. The broadcast includes Kathy Peters of the county’s Natural Resources Division.

Charlotte wanted to give credit to Rep. Kilmer and Rep. Denny Heck for launching the Puget Sound Recovery Caucus, a group of federal legislators working on Puget Sound issues in the “other Washington.” Review a summary of the effort (PDF 1.1 mb) or other information on the Puget Sound Partnership blog.

Derek Kilmer
Derek Kilmer

Three years ago, a newly elected Rep. Kilmer picked up on Puget Sound issues where former Rep. Norm Dicks left off. Through the years, Norm was able to secure funding for many Puget Sound projects — ranging from the removal of Forest Service roads that were smothering salmon streams with sediment to extensive studies of Hood Canal’s low-oxygen problems.

Derek is now promoting a bill known as Puget SOS Act, which calls for greater federal coordination with state, local and tribal partners, as well as formal recognition of Puget Sound as a “great water body’ under the Clean Water Act. Check out the story in the Kitsap Sun by reporter Tristan Baurick.

This month, Kilmer and Heck introduced a new bill, the Green Stormwater Infrastructure Investment Act, to help communities reduce the flow of toxic stormwater into streams and ultimately Puget Sound. The basic idea is to use natural infiltration to reduce stormwater at the source, before it can pick up toxic pollution. This approach has been given the name “green stormwater infrastructure” or GSI.

Denny Heck
Denny Heck

“If our legislation passes,” Derek said in a news letter to constituents, “local communities would be able to access dedicated funding within the Environmental Protection Agency for water quality projects that utilize GSI. Our hope is that this can increase the number of breakthroughs that are happening in places like Tacoma to help protect these vital waterways.”

He offered more details in a news release:

“Stormwater runoff is the top contributor to pollution in Puget Sound, but our nation’s largest estuary isn’t the only place impacted by stormwater. Across the country, in every community, rain mixes with chemicals, oils and other harmful pollutants to flood into our waterways. A stronger federal investment in the prevention of runoff allows for the implementation of cutting-edge solutions and puts our communities on a course towards healthy waters for everyone.”

Specialized bacteria can remove rogue drugs during sewage treatment

UPDATE, March 10, 2016
I’ve added links for three previous reports related to the degradation of pharmaceuticals and personal care products.
—–

Concerns are growing about medications and person-care products that pass through sewage-treatment plants and into Puget Sound, where the chemicals can alter the physiology and behavior of fish and other organisms.

Almost everywhere scientists have looked, they have found drugs that people have either flushed down the drain or passed through their bodies. Either way, many active pharmaceutical compounds are ending up in the sewage at low levels. Conventional sewage-treatment plants can break down up to 90 percent or more of some compounds, but others pass through unaltered.

Now, researchers are working on a process that would use specialized bacteria to break down pharmaceutical compounds at existing sewage-treatment plants. The idea, developed by researchers at the University of Washington, is ready for a limited pilot project at one of the treatment plants in the Puget Sound region.

Heidi Gough, left, and Nicolette Zhou with a table-top treatment plant in the lab. UW photo
Heidi Gough, left, and Nicolette Zhou with a table-top sewage-treatment plant in the lab.
UW photo

Studies into this issue began more than 20 years ago, when it became clear that all sorts of compounds were passing through sewage-treatment plants and getting into the environment. Among the early findings was that male fish exposed to artificial birth-control hormones were changing into female fish. Later studies showed that common antidepressant medications seemed to be changing the behavior of fish, making them easier targets for predators.

In addition to estrogens and antidepressants, researchers have found blood thinners, cholesterol-reducing drugs, various heart medications, several hormones and painkillers, along with caffeine, cocaine and various cosmetic and cleansing chemicals.

A study funded by the Environmental Protection Agency looked for 56 active pharmaceutical compounds in sewage effluent from 50 major treatment plants around the country, finding significant levels of many compounds.

A new study by NOAA’s Northwest Fisheries Science Center and the University of Washington looked at 150 compounds coming from two sewage treatment plants in Puget Sound. They were Bremerton’s plant on Sinclair Inlet and Tacoma’s plant on Commencement Bay. They also tested the local waters along with juvenile chinook salmon and Pacific staghorn sculpin to see if the fish were picking up the compounds.

According to a NOAA news release, the study “found some of the nation’s highest concentrations of these chemical compounds and detected many in fish at concentrations that may affect their growth or behavior.” For additional reporting on that study, check out the Kitsap Sun story by Tristan Baurick and the Seattle Times story by Lynda Mapes.

These chemicals could be having effects on various animals in the food web — from benthic organisms that live in the sediments to marine mammals — but more study is needed. Complicating the situation is that multiple pharmaceutical chemicals may work together to create different effects, depending on their concentrations and the affected organism.

Many people would argue that we have enough information to dramatically increase our efforts to remove these compounds from wastewater going into Puget Sound. Drug take-back programs have been started in many cities and counties throughout Puget Sound to encourage people not to flush unused pills down the toilet or drain. See the Take Back Your Meds website. Still, Washington state has yet to develop a comprehensive statewide program that would cover everyone.

Meanwhile, nobody can say what percentage of the drugs going into the treatment plants were dumped down the drain versus being excreted from the human body. But it wouldn’t matter as much if the chemicals could be eliminated at the sewage-treatment plant.

More than a decade ago, Heidi Gough of the UW’s Department of Civil & Environmental Engineering began working on the development of bacteria that could break down these chemicals of concern. She and her colleagues have isolated cultures of bacteria that can break down triclosan, an antimicrobial; bisphenol A, a plasticizer; ibuprofen, an anti-inflammatory drug; 17β-estradiol, a natural hormone; and gemifibrozil, a cholesterol-lowering drug.

The process of isolating helpful bacteria and boosting their numbers could theoretically be used to break down almost any chemical of concern. To be suitable, the bacteria must 1) break down the target chemical to a very low level, 2) grow well in common growth media without the target chemical, 3) break down the chemical even when other nutrient sources are abundant, and 4) work quickly within the normal rate of sewage treatment.

Nicolette Zhou, a former UW graduate student, worked with Heidi to successfully develop a bench-top treatment plant to test the process. Nicolette also produced a computer model of how the operation would perform at a large-scale treatment plant. She completed her analysis and received her doctorate degree last fall. Her latest findings are now awaiting publication in a scientific journal.

Previous reports:

  • Genes involved in Bisphenol A degradation, Environmental Science and Technology.
  • Degradation of triclosan and bisphenol A by five bacteria, Pub Med.
  • Cultivation and characterization of bacteria capable of degrading pharmaceutical and personal care products, Pub Med.

Other systems have been proposed for breaking down complex pharmaceuticals, such as advanced oxidation or other chemical or physical treatment. But biological breakdown offers the most hope in the short term, because it is how most sewage-treatment plants work can be implemented quickly without major modifications and appears to be economical on a large scale, Nocolette told me.

In a large-scale system, the first step would be to identify the specific contaminants to be reduced and then select the bacteria. Some bacteria will break down multiple chemicals, she said.

The bacteria would be grown in a tank and be fed into the sewage digesters reactors, preferably in a continual flow. Multiple chemicals of concern might require several tanks for growing different bactieria.

If the process is successful and adopted by many treatment plants, an alternative process could be developed. Instead of growing the bacteria onsite, where conditions could be difficult to control, all sorts of bacteria could be grown in an industrial facility. The industrial plant would isolate the actual enzymes needed to break down the chemicals and ship them to the treatment plants. The enzymes could be stored and fed into the treatment process as needed.

The research into this treatment process has progressed to where the next step is a small-scale pilot project at a sewage-treatment plant in the Puget Sound area, Nicolette said. A portion of the actual wastewater would be diverted to the pilot plant, where sewage would be subjected to the specialized bacteria and tested for the level of treatment.

Ultimately, more studies are needed to establish a safe concentration for the various chemicals that come from pharmaceuticals and personal-care products. That way, one could culture the appropriate bacteria and establish a reasonable effluent limit for chemicals going into Puget Sound.

Amusing Monday: Endangered species emerge as art forms

Painting large murals of endangered species on exterior walls across the U.S. is a way of “fostering connections between people and the other forms of life that surround them,” according to Roger Peet, a Portland artist who is leading the project, commissioned by the Center for Biological Diversity.

Whale mural in Los Angeles. Photo: Jess X. Chen
Whale mural in Los Angeles // Photo: Jess X. Chen

The latest mural, painted on a building in Los Angeles, shows a blue whale breaching off the coast of an urban area with an industrial skyline. The mural was painted from a massive stencil by Brooklyn street artists Icy and Sot, who are brothers, according to the website “Brooklyn Street Art.” The mural is designed to inspire protection for the whale and reduction of ocean pollution, the artists said in an interview.

Mountain caribou mural in Sandpoint, Idaho
Mountain caribou mural in Sandpoint, Idaho

The Center for Biological Diversity is perhaps best known for suing the federal government to list and protect declining species, but it has also been committed to public outreach, including the distribution of condoms featuring endangered species. The organization launched the mural project to call attention to at-risk wildlife specific to local communities where the murals are painted, according to the CBD’s website on the mural project.

The first mural in the series, featuring a mountain caribou, was painted in Sandpoint, Idaho, northeast of Spokane. This area of the Selkirk Mountains is the last remaining territory for the caribou in the lower 48 states. Mural artists Mazatl and Joy Mallari worked with Peet on the project.

Arctic grayling mural in Butte, Mont.
Arctic grayling mural in Butte, Mont.

“The city of Sandpoint unanimously approved the mural project for a prominent downtown building and passed a resolution supporting recovery of the caribou and augmentation of the southern Selkirk herd — exactly the kind of local support for endangered species our project is designed to foster,” states the CBD’s website.

The second mural, painted by Peet last summer in Butte, Mont., shows the Arctic grayling, a fish in the salmon family that was once common in Northern Montana, the headwaters of the Missouri River. Because of river diversions and pollution, the fish population has declined dramatically. In the lower 48 states, the fish survives only in a stretch of the Big Hole River near Butte. The Montana Standard has the story.

Monarch butterfly mural in Minneapolis, Minn.
Monarch butterfly mural in Minneapolis, Minn.

A monarch butterfly on a wall in South Minneapolis, Minn., is the third mural in the series. In late summer, monarchs undergo metamorphosis in Minnesota and other northern regions before migrating to Mexico for the winter and then to the southern U.S., where they lay their eggs. Pesticide and development have taken a toll on the monarch habitat and reduced their population by 80 percent over the past 20 years, according to the CBD website. Peet worked with Barry Newman on the mural.

In November, a mural featuring the watercress darter was completed in Birmingham, Ala. This small, brilliantly colored fish is found only in the Birmingham area. Peet worked with Birmingham artists Merrilee Challiss and Creighton Tynes on the mural.

Watercress darter mural in Birmingham, Ala. Photo: Kyle Crider
Watercress darter mural in Birmingham, Ala.
Photo: Kyle Crider

“Birmingham was selected as the site of darter mural because Alabama is a world hotspot for freshwater animal diversity, and the center is working to protect hundreds of Alabama species from extinction,” says a news release from the Center for Biological Diversity.

Upcoming murals include a mussel — the pink mucket — in Knoxville, Tenn., an aquatic salamander — the Ozark hellbender — in St. Louis, Mo., multiple fish of the Colorado River on the Navajo reservation in Arizona, and bull trout in Oakridge, Ore. Organizers say more murals could be painted with additional funding and support from local artists.

Painter Roger Peet, who continues to manage the mural project, says the effort is built upon the biodiversity of individual places:

“Those species embody an area’s natural history and contribute to what makes it irreplaceable. They also have something to say about the future, as many are in danger of going extinct. And when we lose species, the places and lives we live become poorer and shallower places as a result.

“To help bring these species into the light, we decided to paint them on the walls… Whether that’s a fish in a river, a butterfly flitting from plant to plant or a caribou chewing lichen off a tree trunk, we’re bringing together artists and communities to create big, bold images that will become part of the neighborhoods where they’re created, making it a little easier for people to care about the native species struggling to survive in their midst.”

All photos courtesy of the Center for Biological Diversity.