Category Archives: Fish

Puget Sound report tells the environmental story that took place in 2016

The year 2016 may be regarded as a transition year for Puget Sound, coming between the extreme warm-water conditions of 2014 and 2015 and the more normal conditions observed over the past year, according to the latest Puget Sound Marine Waters report.

Click on image to view report
Photo: Todd Sandell, WDFW

The report on the 2016 conditions was released this past week by the Marine Waters Workgroup, which oversees the Puget Sound Ecosystem Monitoring Program (PSEMP). The report includes data collected in 2016 and analyzed over the past year.

Some findings from the report:

  • Water temperatures were well above normal, though not as extreme as in 2015.
  • A warm spring in 2016 caused rapid melting of mountain snowpack and lower streamflows in late spring and summer.
  • Dissolved oxygen levels were lower than average in South Puget Sound, Central Puget Sound and Hood Canal, with the most intense oxygen problems in southern Hood Canal, although no fish kills were reported.
  • It was a year for the growth of Vibrio parahaemolyticus, a bacteria responsible for 46 laboratory-confirmed illnesses, including intestinal upset, among people who ate oysters in Washington during 2016.
  • Paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP) and domoic acid (DA) resulted in shellfish closures in 18 commercial and 38 recreational growing areas. But no illness were reported in 2016.
  • DSP was detected at 250 micrograms per 100 grams in blue mussel tissues sampled from Budd Inlet near Olympia last year. That is the highest level of DSP ever detected in Washington state.
  • Overall, zooplankton populations were high in 2016 compared to 2014, but generally not as high as in 2015.

Conditions, known or unknown, were responsible for various effects on fish and wildlife in 2016:

  • It was the worst year on record for the Cherry Point herring stock, which has been decline for years along with more recent declines in South and Central Puget Sound. Five local stocks had no spawn that could be found in 2016. Herring were smaller than average in size.
  • The overall abundance and diversity of marine bird species in 2015-16 were similar to 2014-15.
  • Rhinoceros auklets, however, were reported to have serious problems, which experts speculated could be related to a low abundance and size of herring. On Protection Island, breeding season started out normal, but fledgling success was only 49 percent, compared to 71 percent in 2015. Auklet parents were seen to feed their chicks fewer and smaller fish than usual.
  • Including the Washington Coast, more than 1,000 carcasses of rhinocerous auklets were found by volunteers. The primary cause of death was identified as severe bacterial infections.

If you are an average person concerned about environmental conditions in and around Puget Sound, the two-page summary and four-page highlights section near the beginning of the report will leave you better informed. To dig deeper, peruse the pages that follow.

The report is designed to be easily compared with previous years:

Could we ever reverse the trend of shrinking Chinook salmon?

Much has been said about the decline of Puget Sound Chinook salmon. Often the discussion focuses on how to increase the salmon population, but I believe a good case can be made for increasing the size of these once-mighty “kings.”

Chinook salmon // Photo: NOAA Fisheries

There are plenty of reasons why we should strive for larger Chinook, not the least of which is the pure joy of seeing — and perhaps catching — a giant salmon. But I’m also thinking about our endangered Southern Resident killer whales, which don’t seem to find Puget Sound very hospitable anymore. As we know, the whales favor Chinook over any other food.

While it might take more energy for a killer whale to chase down a large Chinook versus a smaller one, the payoff in nutrition and energy far outweighs the expenditure, according to Jacques White of Long Live the Kings, who has been thinking about the size issue for some time.

In terms of competition, a giant returning Chinook might be difficult for a harbor seal to handle, and that could give the orcas a special advantage. Still, we are learning that harbor seals create problems for the Chinook population by eating millions of tiny smolts migrating to the ocean before they get a chance to grow up.

Perhaps the major reason that Chinook have declined in size is the troll fishing fleet off the coast of Alaska and Northern Canada, Jacques told me. It is almost simple math. It takes six, seven or eight years to grow the really large Chinook in the ocean. Today’s fishing fleet goes out into the middle of the Chinook-rearing areas up north. The longer the fishing boats stay there, the more likely it is that they will catch a fish that could have grown into a really big one.

Years ago, the fishing boats did not travel so far out to sea, Jacques said. There was no need to travel far when plentiful runs of salmon came right into the shore and swam up the rivers.

“In the old days,” he said, “you didn’t have people risking their necks off Alaska trying to catch fish in all kinds of weather and seas.”

In additional to the trollers, plenty of sport fishermen have taken the opportunity to catch and take home nice trophy fish, putting extra pressure on the biggest members of the fish population. Fishing derbies, past and present, challenged people to catch the biggest Chinook.

Long Live the Kings, a conservation group, once held fishing derbies, Jacques noted. But, after giving it some thought, everyone realized that the effort was counterproductive. “Long Live the Kings is now out of the derby business,” he said.

Gillnets, once common in Puget Sound, entrap fish by snagging their gills. Gillnets tend not to catch the truly giant salmon, because of the mesh size, but they do catch the larger salmon. Often only the smaller ones make it through to spawn — and that breeds another generation of small fish.

Fishing is not the only factor that tends to favor the survival of small fish, but it tends to be a big factor, according to Tom Quinn, a University of Washington professor of aquatic and fishery sciences. The issue is complicated, and every salmon run has its own characteristics, he said.

Hatcheries, dams and habitat alterations all tend to favor fish that can compete and survive under new conditions, and often those conditions work better for smaller fish. Changes in the food web may create a nutritional deficit for some salmon stocks, and competition at sea with large numbers of hatchery fish may be a factor. Check out the study in the journal Plos One by researchers for the Alaska Department of Fish and Game.

With the removal of two dams on the Elwha River, I’m hoping that experts can make sure that the conditions will be right for larger fish — if they can survive to make it home.

Quinn, along with doctoral student Michael Tillotson, recently published a paper showing how fishing seasons alone can alter the genetic makeup of a population along with the behavior of individual fish.

Although these characteristics are not necessarily related to the size of fish, it directly affects the fitness of the population. When people are fishing on wild stocks during open season, a fish has the best chance of survival if it shows up before the fishing season begins or after the fishing season is over. But that is not nature’s way.

Through evolution, the greatest number of fish tend to come back when environmental conditions are optimal for migration, spawning and smolt survival. If fishing seasons are timed for the peak of the run, that will reduce the percentage of fish taking advantage of the best conditions. Over time, the population gets skewed, as more fish come back during times when conditions are less than optimal.

The result is likely a lower survival rate for the overall population. The real crunch could come in the future as a result of climate change. If temperatures or streamflows become more severe, the fish may be in a no-win situation: If they show up at the most optimal time, they are more likely to get caught. if they come early or late, the environment could kill them or ruin their chances of successful spawning.

“We are reducing the ability of fish to find good environmental conditions,” said Michael Tillotson in a UW news release about the new paper. “We’re perhaps also reducing the ability of fish to adapt to climate change.”

Certain behaviors are bred into wild fish over many generations, and some traits are connected to their timing. Whether they feed aggressively or passively can affect their survival. Some salmon will wait for rain; others will wait for the right streamflow or temperature. Some smolts will stay in freshwater for extended periods; others will move quickly to saltwater. It’s not a great idea when fishing seasons, rather than environmental conditions, dictate fish behavior.

The move to mark-selective fishing — which involves removing the adipose fin of all hatchery fish before they are released — can help solve some problems for wild fish, Tom told me. Under selective fishing rules, fishers are allowed to keep the hatchery fish with a missing fin, but they must release the wild ones that still have all their fins. Some of the wild fish die from injury, but most of them survive, he said.

The key to the problem is a better understanding of the genetic makeup of the individual stocks while increasing the effort to maintain a high-level of genetic diversity. That’s an insurance policy that allows the fish to survive changing conditions.

The genes for giant Chinook have not been lost entirely, as I pointed out in Water Ways on Nov. 25. If we want to have larger Chinook, we must protect the individual Chinook that are larger. That could mean reduced ocean fishing, selective fishing for hatchery populations, and requirements to release fish larger than a certain size. Perhaps it would even be possible to selectively breed larger Chinook in a hatchery for a limited time to increase the size of the fish.

It won’t be easy, because these notions involve messing with billions of dollars in the fishing industry, not to mention complicated international relations. I will save discussions about the Pacific Salmon Treaty for another day. I will just say that this treaty is supposed to be between the U.S. and Canada. But negotiations involve tradeoffs among Washington, Canada and Alaska. Even the Endangered Species Act can’t always protect wild Puget Sound Chinook from being caught in Alaska, with the ultimate outcome that fewer fish make it home to spawn.

What would it take to restore the legendary Chinook salmon?

Giant Chinook salmon of 50 pounds or more have not yet faded into legend, as operators of a salmon hatchery in Central British Columbia, Canada, can tell you.

Ted Walkus, a hereditary chief of the Wuikinuxv First Nation, holds a Chinook salmon caught this year for the Percy Walkus Hatchery on the Wannock River in Central British Columbia.
Photo: Percy Walkus Hatchery

The annual spawning effort at the Percy Walkus Hatchery on the Wannock River involves catching Chinook as they move upstream rather than waiting for them to arrive at the hatchery. This year, fishing crews brought home a remarkably large fish that has lived long and prospered. The progeny of this fish will be returned to the river from the hatchery to continue the succession of large Chinook.

These big fish compare to the massive Chinook that once made their way up the Elwha River and other major salmon streams of Puget Sound. Knowing that these big fish still exist provides hope that we might someday see such large salmon on the Elwha, following the recent removal of two dams and ongoing habitat restoration.

Large, powerful Chinook are suited to large, powerful streams. Big chinook can fight their way through swifter currents, jump up larger waterfalls and protect their eggs by laying deeper redds. Experts aren’t sure that the conditions are right for large Chinook to return to the Elwha, but many are hopeful. I explored this idea in a story I wrote for the Kitsap Sun in 2010.

As for the two-year-old Percy Walkus Hatchery, big fish are not uncommon in the Wannock River, as you can see in the hatchery’s Facebook photo gallery. By spawning both large and smaller salmon, the hatchery hopes to rebuild the once-plentiful numbers of Chinook in the system. Involved in the project are the Wuikinuxv First Nation along with Canada’s Department of Fisheries and Oceans and others.

Ted Walkus, a hereditary chief of the Wuikinuxv and the man featured in the photo on this page, said the largest fish need to remain part of the gene pool for the hatchery and the river. That’s why volunteers go out into the river to take the brood stock. This year, 47 males and 47 females were spawned to produce more than 300,000 fertilized eggs.

“If you catch a 60-pound salmon and you keep it without breeding, that part of the gene pool eventually gets wiped out,” Walkus was quoted as saying in a CBC News report.

For similar reasons, some anglers choose to release their catch alive, if possible, after getting a photo of their big fish. The hope, of course, is that the fish will continue on and spawn naturally. In the hatchery, the genes will be passed on to more salmon when the progeny are released. Unfortunately, I was unable to quickly locate a facility management plan for the Percy Walkus Hatchery to see if anyone has projected the long-term effects of the hatchery.

Chet Gausta, middle, shows off the big fish he caught off Sekiu in 1964. Chet's younger brother Lloyd, left, and his uncle Carl Knutson were with him on the boat.
Photo courtesy of Poulsbo Historical Society/Nesby

Big fish are genetically inclined to stay at sea five, six or seven years rather than returning after four years. They must avoid being caught in fishing nets and on fishing lines during their migration of up to 1,000 miles or more before making it back home to spawn.

Perhaps you’ve seen historical black-and-white photos of giant Chinook salmon taken near the mouth of the Elwha River. Like the giant Chinook of the Wannock River, some of these fish are nearly as long as a grown man is tall. Catching them with rod and reel must be a thrill of a lifetime.

Some of those giants — or at least their genes — may still be around. The largest Chinook caught and officially weighed in Washington state dates back to 1964. The 70-pound monster was caught off Sekiu by Chester “Chet” Gausta of Poulsbo, who I wrote about upon his death in 2012. See Water Ways, Feb. 3, 2012. His photo is the second on this page.

There’s something to be said for releasing salmon over a certain size, and that goes for commercial fishing as well as sport fishing. Gillnets, for example, target larger fish by using mesh of a certain size, say 5 inches. Smaller fish can get through the nets, spawn in streams and produce the next generation — of smaller fish.

The genetic effects of removing the larger fish along with the effects of taking fish during established fishing seasons artificially “selects” (as Darwin would say) for fish that are smaller and sometimes less fit. Some researchers are using the term “unnatural selection” to describe the long-term effects of fishing pressure. I intend to write more about this soon and also discuss some ideas for better managing the harvest to save the best fish for the future.

Puget Sound freshens up with a little help from winter snowpack

In the latest “Eyes Over Puget Sound” report, one little note caught my attention: “Puget Sound is fresher than it’s ever been the past 17 years.”

Jellyfish are largely missing this fall from Puget Sound. Some patches of red-brown algae, such as this one in Sinclair Inlet, have been observed.
Photo: Washington Department of Ecology

At least temporarily, something has changed in the waters of Puget Sound over the past few months. It may not last, but it appears to be a good thing.

The monthly EOPS report, compiled by a team of state environmental experts, lays out recent water-quality data for the Department of Ecology. The report also includes personal observations, aerial photographs and scientific interpretations that keep readers abreast of recent conditions while putting things in historical context.

The “fresh” conditions called out in the report refers to the salinity of Puget Sound, which is driven largely by the freshwater streams flowing into the waterway. The reference to 17 years is a recognition that the overall salinity hasn’t been this low since the current program started 17 years ago.

Dissolved oxygen, essential to animals throughout the food web, was higher this fall than we’ve seen in some time. Hood Canal, which I’ve watched closely for years, didn’t come close to the conditions that have led to massive fish kills in the past. The only problem areas for low oxygen were in South Puget Sound.

Water temperatures in the Sound, which had been warmer than normal through 2015 and 2016, returned to more average conditions in 2017. Those temperatures were related, in part, to the warm ocean conditions off the coast, often referred to as “the blob.” In South Puget Sound, waters remained warm into October.

Why is the water fresher this fall than it has been in a long time? The reason can be attributed to the massive snowpack accumulated last winter, according to oceanographer Christopher Krembs, who leads the EOPS analysis. That snowpack provided freshwater this past spring, although rivers slowed significantly during the dry summer and continued into September.

“We had a really good snowpack with much more freshwater flowing in,” Christopher told me, adding that the Fraser River in southern British Columbia was well above average in July before the flows dropped off rapidly. The Fraser River feeds a lot of freshwater into northern Puget Sound.

Freshwater, which is less dense than seawater, creates a surface layer as it comes into Puget Sound and floats on top of the older, saltier water. The freshwater input fuels the circulation by generally pushing out toward the ocean, while the heavier saltwater generally moves farther into Puget Sound.

“The big gorilla is the upwelling system,” Christopher noted, referring to the rate at which deep, nutrient-rich and low-oxygen waters are churned up along the coast and distributed into the Puget Sound via the Strait of Juan de Fuca. Lately, that system has been turned down to low as a result of larger forces in the ocean.

In an advisory issued today (PDF 803 kb), NOAA’s Climate Prediction Center says a weak La Niña is likely to continue through the winter. For the northern states across the country, that usually means below-average temperatures and above-average precipitation. (It’s just the opposite for the southern states.)

With a favorable snowpack already accumulating in the mountains, experts can’t help but wonder if we might repeat this year’s conditions in Puget Sound over the next year.

Christopher told me that during aerial flights this fall, he has observed fewer jellyfish and blooms of Noctiluca (a plankton known to turn the waters orange) than during the past two years. Most people think this is a good thing, since these organisms prevail in poor conditions. Such species also have a reputation as a “dead end” in the food web, since they are eaten by very few animals.

Christopher said he noticed a lot of “bait balls,” which are large schools of small fish that can feed salmon, birds and a variety of creatures. “I assume most of them are anchovies,” he said of the schooling fish.

I would trade a jellyfish to get an anchovy on any day of the year.

Amusing Monday: Splendid underwater images from EV Nautilus

Exploration Vessel Nautilus has completed its journey north to the Olympic Coast National Marine Sanctuary, where the research team captured plenty of intriguing video, including a close look at the sunken submarine USS Bugara (first video below). All videos are best in full screen.

EV Nautilus, operated by Ocean Exploration Trust, conducts scientific research along the sea bottom throughout the world, specializing in biology, geology and archeology. Education is a major part of the effort, and school curricula are built around live and recorded telecasts from the ship. In addition, a select group of educators and students are invited to go on the expeditions each summer.

This year’s expedition began in May in California, where the ship took data for high-resolution maps of offshore areas never surveyed before. That was followed by an examination of the Cascadia Margin, a geologically active area off the Oregon Coast where the researchers identified bubbling seeps with multibeam sonar.

Dives using remotely operated vehicles began in June when the ship arrived off the Canadian Coast west of Vancouver Island. One dive, which went down to 2,200 meters, captured images of a hydrothermal vent, where water gets expelled after being superheated by the Earth’s magma. Watch the video saved on the Nautilus Facebook page. In another video, the temperature at one vent got so hot that the researchers found themselves cheering as the temperature at the probe kept going up.

I am easily amused, but I have to say that I was intrigued by a 9,000-year-old living reef made of glass sponges that was discovered off the coast of Galiano Island, British Columbia (second video this page).

One amusing video was created while watching a six-gill shark in the Channel Islands off California. Suddenly, a crab came into view carrying another crab (third video below). “It’s an Uber crab!” one researcher commented. “Is that lunch?” another wondered.

Another great shot from the Channel Islands showed a big ball of shimmering anchovies along with a select group of predators, including several fish, a six-gill shark and a sea lion. This video can be seen on the Nautilius Facebook page.

The examination of the submarine Bugara (first video on this page) occurred Aug. 25 off Cape Flattery in Olympic Coast National Marine Sanctuary. The event was live-streamed with commentary from scientists, archaeologists and historians, as well as veterans who served on the submarine. Bugara was built during World War II and later became the first American submarine to enter the Vietnam War after Congress passed the Gulf of Tonkin Resolution.

After its decommissioning in California, Bugara was being towed to Washington state to serve as a target for a new weapons system. On June 1, 1971, the submarine took on water during transit and sank to the bottom, where it has rested ever since. No injuries occurred during the incident. For historical details, go to Bugara.net, which was set up for former sailors and others associated with the submarine.

A longer 1.5-hour video of the Bugara inspection by ROV can be viewed on the Nautilus Facebook page. This is basically what was viewed online in real time by observers — including a group gathered at Naval Undersea Museum at Keyport.

Another interesting video shot in Olympic Coast National Marine Sanctuary shows a siphonophore, a colony of specialized organisms that work together to form a chain of individuals that together are capable of swimming, stinging, digesting and reproducing. Researchers working the 4-to-8-p.m. shift were able to observe more than their share of these interesting colonies, so the group became known as the “Siphono4-8” (video below).

Nautilus currently is moored in Astoria, Ore., where it is scheduled to begin the next leg of its expedition on Wednesday. The goal is to search near Oregon’s Heceta Bank for ancient coastal landscapes that may have been above sea level 21,000 to 15,000 years ago. More live sessions and archived video are planned. Follow these Nautilus links for details:

The Ocean Exploration Trust was founded in 2008 by Robert Ballard, known for his discovery of RMS Titanic’s final resting place. The 2017 Nautilus expedition, which will continue into November, marks the third year of exploring the Eastern Pacific Ocean. The expedition has been covered by these news media:

Some toxic chemicals increase; others decline in Puget Sound fish

The importance of long-term environmental monitoring is driven home in a new study by toxicologists who have spent years examining chemical contamination in Puget Sound fish.

English sole sampling locations include both urban and rural areas of Puget Sound.
Archives of Env. Contamination and Toxicology

After 28 years of monitoring, researchers have confirmed that it is extremely difficult to remove polychlorinated biphenyls (PCBs) from the Puget Sound food web. In some locations, PCBs are actually increasing in bottom fish some 38 years after these chemicals were banned in the United States.

“Across the board, we’ve seen either no decline or even increases in our English sole, which is really kind of shocking considering all the remediation that has been going on,” said Jim West, a toxicologist with the Washington Department of Fish and Wildlife who I interviewed for a story in the Encyclopedia of Puget Sound.

The report, published in the Archives of Environmental Contamination and Toxicology, provides some bleak news about PCBs, but there are hopeful signs for other chemicals. For example, researchers were pleasantly surprised to find that toxic flame retardants containing polybrominated diphenyl ethers seem to be disappearing rapidly from the ecosystem less than a decade after the most toxic forms of PBDEs were banned in Washington state.

The study went to some lengths to make sure the decline in PBDEs in Pacific herring was not related to other factors — such as size, since the average herring is getting smaller over time.

“I now feel like this is a solid trend, and that’s really exciting,” Jim told me. “I believe it is related to our efforts in source control.”

Of course, we wouldn’t know about these long-term trends in chemical contamination were it not for long-term monitoring efforts. I discussed the importance of monitoring with Sandie O’Neill, a research scientist with WDFW. She is an author of the new study along with Jim West and Gina Ylitalo of NOAA’s Northwest Fisheries Science Center. See the related story “Monitoring helps to reveal hidden dangers in the food web” in the Encyclopedia of Puget Sound.

“We are changing people’s perspectives about contaminants throughout the (Puget Sound) watershed, including how such contaminants get into the food web,” Sandie told me.

As Sandie describes it, monitoring is needed in many aspects of ecosystem health. It can tell us whether nature is healing itself and whether restoration projects by humans are improving fish and wildlife habitat as well as human health.

Amusing Monday: A quiz for you based on the ‘Puget Sound Fact Book’

Two years ago, I worked with a group of Puget Sound researchers and environmental writers to produce the “Puget Sound Fact Book” (PDF 27.6 mb) for the Encyclopedia of Puget Sound and Puget Sound Institute. The project was funded by the Environmental Protection Agency to provide a quick reference for anyone interested in the Puget Sound ecosystem.

I have pulled out some of the facts (with excerpts from the fact book) to create a 15-question quiz for this “Amusing Monday” feature. The answers and quotes from the book can be found below the quiz.

1. Puget Sound averages 205 feet deep. What is its greatest depth?

A. 300 feet
B. 600 feet
C. 900 feet
D. 1,200 feet

2. It is said that Puget Sound was carved out by a series of glaciers. What was the name of the last ice glaciation some 15,000 years ago?

A. Vashon
B. Cascade
C. Blake
D. Olympia

3. One river is responsible for at least one-third of all the freshwater flowing into Puget Sound. What river is it?

A. Snohomish
B. Skagit
C. Skokomish
D. Puyallup

4. How much water is contained in the main basin of Puget Sound, which includes all of the inlets south of Whidbey Island?

A. 5 cubic miles
B. 10 cubic miles
C. 40 cubic miles
D. 80 cubic miles

5. How many Washington counties have shorelines that front on Puget Sound, including the Strait of Juan de Fuca and waters around the San Juan Island? (That’s the definition of Puget Sound used by the Puget Sound Partnership.)

A. Six
B. Eight
C. Ten
D. Twelve

6. What percentage of the total Washington state population lives in counties with shorelines on Puget Sound?

A. 58 percent
B. 68 percent
C. 78 percent
D. 88 percent

7. Puget Sound is part of the Salish Sea, which extends into Canada. How many marine mammals are considered by researchers to be “highly dependent” on habitats in the Salish Sea?

A. 10
B. 20
C. 30
D. 40

8. Three types of killer whales spend their lives in and around the Salish Sea. “Residents” specialize in eating chinook salmon, and “transients” specialize in eating marine mammals. What do the so-called “offshore” killer whales specialize in eating?

A. Sharks
B. Squid
C. Plankton
D. Birds

9. Rockfish are a long-lived species that live in rocky areas of Puget Sound. How many species of rockfish can found in the waterway?

A. Four
B. 12
C. 21
D. 28

10. What is the length of shoreline in the main basin of Puget Sound, which includes all inlets south of Whidbey Island?

A. 246 miles
B. 522 miles
C. 890 miles
D. 1,332 miles

11. Bulkheads and other shoreline armoring disrupt the ecological functions of natural shorelines. What percentage of the Puget Sound shoreline is armored with man-made structures?

A. 7 percent
B. 17 percent
C. 27 percent
D. 37 percent

12. How many dams could be counted in 2006 in the greater Puget Sound region, including the Elwha dams on the Olympic Peninsula?

A. 136
B. 236
C. 336
D. 436

13. Puget Sound Partnership tracks the attitudes and values of Puget Sound residents. What percentage of the population believes that cleaning up the waters of Puget Sound is an “urgent” priority?

A. 40 percent
B. 50 percent
C. 60 percent
D. 70 percent

14. Climate change can be expected to result in significant changes in the Puget Sound region. Which of the following is something we are likely to see over the next 40 years?

A. Higher 24-hour rainfall totals
B. Higher peak flows in streams with more flooding
C. Α small change in annual rainfall totals
D. All of the above

15. Climate change also affects sea life through ocean acidification. Few species in seawater are expected to avoid impacts. Some of the greatest concerns are being expressed for which animals?

A. Shellfish
B. Sharks
C. Salmon
D. Sea lions

Answers:

1. Puget Sound averages 205 feet deep. What is its greatest depth? Answer: C, 900 feet

“Puget Sound averages 205 feet deep, with the deepest spot near Point Jefferson in Kitsap County at more than 900 feet.”

2. It is said that Puget Sound was carved out by a series of glaciers. What was the name of the last ice glaciation some 15,000 years ago? Answer: A, Vashon

“Puget Sound, as we know it today, owes much of its size and shape to massive ice sheets that periodically advanced from the north, gouging out deep grooves in the landscape. The most recent glacier advance, about 15,000 years ago, reached its fingers beyond Olympia. The ice sheet, known as the Vashon glacier, was more than a half-mile thick in Central Puget Sound and nearly a mile thick at the Canadian border.”

3. One river is responsible for at least one-third of all the freshwater flowing into Puget Sound. What river is it? Answer: B, Skagit

“The annual average river flow into the Sound is about 1,174 cubic meters per second, and a third to a half of this comes from the Skagit River flowing into Whidbey Basin. It would take about 5 years for all the rivers flowing into the Sound to fill up its volume … “

4. How much water is contained in the main basin of Puget Sound, which includes all of the inlets south of Whidbey Island? Answer: C, 40 cubic miles

“Chesapeake Bay, which filled the immense valley of an ancient Susquehanna River, covers about 4,480 square miles — more than four times the area of Puget Sound (not including waters north of Whidbey Island). But Chesapeake Bay is shallow — averaging just 21 feet deep. In comparison, Puget Sound averages 205 feet deep… Consequently, Puget Sound can hold a more massive volume of water — some 40 cubic miles, well beyond Chesapeake Bay’s volume of 18 cubic miles.”

5. How many Washington counties have shorelines that front on Puget Sound, including the Strait of Juan de Fuca and waters around the San Juan Island? (That’s the definition of Puget Sound used by the Puget Sound Partnership.) Answer: D, twelve

“The Puget Sound coastal shoreline lies within 12 of Washington state’s 39 counties: Clallam, Island, Jefferson, King, Kitsap, Mason, Pierce, San Juan, Skagit, Snohomish, Thurston and Whatcom. An additional two counties (Lewis County and Grays Harbor County) are also within the watershed basin, although they do not have Puget Sound coastal shorelines….”

6. What percentage of the total Washington state population lives in counties with shorelines on Puget Sound? Answer: B, 68 percent

“As of 2014, the 12 Puget Sound coastal shoreline counties accounted for 68 percent of the Washington State population — 4,779,172 out of 7,061,530, according to the U.S. Census Bureau.”

7. Puget Sound is part of the Salish Sea, which extends into Canada. How many marine mammals are considered by researchers to be “highly dependent” on habitats in the Salish Sea? Answer: C, 30 marine mammals

“Thirty-eight species of mammals depend on the Salish Sea. Of the 38 species of mammals that have been documented using the Salish Sea marine ecosystem, 30 are highly dependent, 4 are moderately dependent, and 4 have a low dependence on the marine or intertidal habitat and marine derived food when present.”

8. Three types of killer whales spend their lives in and around the Salish Sea. “Residents” specialize in eating chinook salmon, and “transients” specialize in eating marine mammals. What do the so-called “offshore” killer whales specialize in eating? Answer: A, sharks

“Three ecotypes of killer whales (Orcinus orca) can be found in the Salish Sea. These distinct population segments or designatable units are classified as fish-eating Residents (both the Northern and Southern Resident populations), marine-mammal-eating transients (West Coast Transients), and fish eaters that specialize in sharks called Offshore Killer Whales.”

9. Rockfish are a long-lived species that live in rocky areas of Puget Sound. How many species of rockfish can found in the waterway? Answer: D, 28 species

“The Puget Sound has 28 species of rockfish. Rockfish are known to be some of the longest lived fish of Puget Sound. Maximum ages for several species are greater than 50 years. The rougheye rockfish can live up to 205 years.”

10. What is the length of shoreline in the main basin of Puget Sound, which includes all inlets south of Whidbey Island? Answer: D, 1,332 miles

“The coastline around Puget Sound is 2,143 km (1,332 miles) long. It would take about 18 unceasing days and nights to walk the entire shoreline if it were passable — or legal — everywhere. Note: this distance refers to Puget Sound proper and does not include the San Juan Islands or the Strait of Juan de Fuca.”

11. Bulkheads and other shoreline armoring disrupt the ecological functions of natural shorelines. What percentage of the Puget Sound shoreline is armored with man-made structures? Answer: C, 27 percent armored

“The amount of artificial shoreline has increased by 3,443 percent since the mid- to late-1800s. For example, shoreline armoring — such as bulkheads and riprap — has been constructed on an average 27 percent of the Puget Sound shoreline, but as high as 63 percent of the central Puget Sound shoreline.”

12. How many dams could be counted in 2006 in the greater Puget Sound region, including the Elwha dams on the Olympic Peninsula? Answer: D, 436 dams

“As of 2006, there were 436 dams in the Puget Sound watershed. Dams alter the water flow of rivers and trap sediment, which affect deltas and embayments at the mouths of these rivers and streams. For example, there was nearly 19 million cubic meters of sediment trapped behind the Elwha and Glines Canyon Dams on the Elwha River ¬ enough sediment to fill a football field to the height of the Space Needle more than 19 times.”

13. Puget Sound Partnership tracks the attitudes and values of Puget Sound residents. What percentage of the population believes that cleaning up the waters of Puget Sound is an “urgent” priority? Answer: C, 60 percent

“A related, ongoing survey has been gauging the attitudes and values of individual Puget Sound residents, beginning with the first survey in 2008. Since the survey’s inception, more than 60 percent of the population has held to the belief that cleaning up the waters of Puget Sound is an ‘urgent’ priority.”

14. Climate change can be expected to result in significant changes in the Puget Sound region. Which of the following is something we are likely to see over the next 40 years? Answer: D, all of the above

“Projected changes in total annual precipitation are small (relative to variability) and show increases or decreases depending on models, which project a change of −2 % to +13 % for the 2050s (relative to 1970-1999) ….

“More rain in autumn will mean more severe storms and flooding. Annual peak 24-hour rainfall is projected to rise 4 to 30 percent (depending on greenhouse emissions levels) by the late 21st century. Hundred-year peak stream flows will rise 15 to 90 percent at 17 selected sites around Puget Sound. In the flood-prone Skagit Valley, the volume of the 100-year flood of the 2080s will surpass today’s by a quarter, and flooding and sea-level rise together will inundate 75 percent more area than flooding alone used to.

“At the other extreme, water will become scarcer in the spring and summer…. By the 2080s, average spring snowpack in the Puget Sound watershed is projected to decline 56 to 74 percent from levels 100 years earlier. The decline will reach 80 percent by the 2040s in the headwaters of the four rivers (the Tolt, Cedar, Green, and Sultan) serving the cities of Seattle, Tacoma, and Everett — reflecting the fact that their snowpacks are already very low, hence vulnerable. By the 2080s, April snowpack will largely disappear from all four watersheds, leaving Puget Sound’s major rivers low and dry in summer.”

15. Climate change also affects sea life through ocean acidification. Few species in seawater are expected to avoid impacts. Some of the greatest concerns are being expressed for which animals? Answer: A, shellfish

“Another factor has also made the Northwest a frontline for acidification: the importance of its shellfish industry, together with the special vulnerability of one key component, larval oysters. University of Washington researchers recently identified worrisome effects on other species with vital commercial or ecological importance. Acidification affects the ability of mussels to produce byssus, the tough adhesive threads that anchor them to their rocks against waves and surf — a life-and-death matter for a mussel. The native bay mussel (Mytilus trossulus) also loses byssal strength when water temperatures surpass 20 degrees C., whereas Mediterranean mussels (M. galloprovincialis) grow more byssus as the waters warm. This suggests a potential species succession, from native to introduced mussels, as Puget Sound becomes warmer and more acidic.

“Potentially more ecologically devastating are acidification’s effects on copepods and krill, small swimming crustaceans at the base of the marine food web….. Krill also inhabit deeper, more acidic waters than copepods, compounding their exposure. Their loss would be grievous for the fishes, seabirds and whales that depend on them.”

Bears have gathered for their annual feast at Alaska’s Brooks Falls

In plain view of one live camera, a bear waits patiently as leaping salmon fly all around. The bear is content to wait for for a big fish to leap into his paws or his mouth.

In front of another live camera, a group of bears forage downstream in the river, going underwater to get their salmon meal. One chews vigorously while standing upright in chest-deep water.

These are a couple of the scenes I’ve been watching this morning at the Brooks Falls overlook in Katmai National Park. I have never been to the national park, but I have enjoyed these live video feeds for years. It seems incredible that we can observe brown bears doing what they do naturally while remaining out of sight and hearing of the bears.

All four bear cams can be viewed at once from the Explore website. Scroll down the page to read comments from the camera operators and other folks watching remotely.

Park officials estimate that more than 100 bears use this mile-long stretch of Brooks River to feast on what they say is the largest sockeye salmon run in the world. These bears are part of a population of 2,200 that live in the park. It is said that bears outnumber people on the Alaska Peninsula.

Another group of live webcams are poised to capture the movements of Northern Resident killer whales in Blackney Pass, one of the primary travel routes for the whales during the summer months. Again, scroll down to view comments. The cameras are coordinated by OrcaLab, Paul Spong’s research station on Hanson Island in British Columbia’s Johnstone Strait.

For other critter cams, check out what I posted in April (Water Ways, April 24, 2017).

Forest battle continues over defining the upper bounds of fish habitat

A long-running battle over how to manage potential fish habitat on commercial forestland could be coming to a head — although it isn’t clear if the solution will satisfy either forestland owners or environmentalists.

Jamie Glasgow of Wild Fish Conservancy (center) leads a crew surveying a stream for the presence of fish in 2014. // Photo: Chris Linder

To be clear, there is not much argument about streamside buffers where salmon, trout and other fish are readily found, thanks to state and federal rules stemming from the landmark Forests and Fish Report. Buffers are designed to save trees that serve the needs of fish — including insects for food, shade for cool water and eventually down trees that form pools for resting as well as hiding places and spawning areas.

Environmentalists contend that it is important to protect unoccupied fish habitat as well as areas occupied by fish at any point in time. If salmon populations are to rebound, salmon fry could need extra space to grow and develop, says Jamie Glasgow, a biologist with Wild Fish Conservancy. That means larger buffers should go where fish habitat can be found.

Of course, timberland owners don’t want to leave large buffers on small stream segments where fish would never go. For them, perhaps hundreds of millions of dollars in commercial timber could be left standing under new rules, depending on how the state’s Forest Practices Board comes down on this issue of fish habitat. The board is scheduled to take up the issue again with some kind of action planned on Aug. 9.

Fish habitat is defined in the Forest and Fish Report as areas of a stream “used by fish at any life stage at any time of the year, including potential habitat likely to be used by fish which could be recovered by restoration or management and includes off-channel habitat.” (The emphasis is mine.)

The Forest and Fish Report was incorporated into state law by the Washington Legislature, and federal agencies adopted those concepts as a statewide “habitat conservation plan” to protect species listed under the Endangered Species Act, including chinook salmon.

One of the big arguments about fish habitat revolves around how to determine just how far upstream fish would likely go and where they would be deterred under various natural conditions they encounter, such as streamflow or natural barriers such as waterfalls.

The Forest and Fish Report anticipated that a map would be developed with all stream segments designated as either fish habitat or not fish habitat. After several years, such a map was developed in 2005, based on the size and steepness of the streams, using the best information available.

It soon became apparent, however, that fish were being found in areas marked as non-habitat on the maps. Other areas designated as habitat were sometimes unable to support fish. Some fish-bearing streams were not even on the maps, and some streams were in the wrong place. I wrote about the efforts by Wild Fish Conservancy to correct some maps three years ago (Kitsap Sun, Sept. 27, 2014). Previous maps had proved to be a problem as well, even before the Forest and Fish Report (Kitsap Sun, May 28, 1996).

The maps are still used as guidance, but buffer determinations must be made for each logging or development project based on actual site conditions. If a stream is 2 feet wide and the steepness is less than a 20 percent — or 16 percent in some areas — it is assumed that fish can get there.

But — and here’s the rub — an allowable fall-back method is to identify the presence of fish, either through snorkel surveys or by “elecrtrofishing,” which involves putting a nonlethal current in the water to stun the fish. Where fish are located, the area is designated as fish habitat, along with waters that extend upstream to a natural “break,” such as a waterfall or a stream confluence that would prevent fish from going any farther.

Much history surrounds this issue, and all sides should be given credit for working through many thorny habitat problems through the years. Nobody wants to go back to a time when the spotted owl was a symbol for conflict about whether forests were mainly for jobs or fish and wildlife.

As for fish habitat, experts have renewed their attempt to come up with reliable and objective methods to identify the break points between habitat (known as “Type F waters,” which stands for fish) and non-habitat (“Type N waters”) without the costs and impacts of surveying every stream for fish.

Environmental groups became impatient with the effort — or lack of effort at times — over the past 12 years — or more if you go back to the Forest and Fish Report. The matter has gone into formal dispute resolution, as provided by the Forest and Fish Law, and it now is up to the Forest Practices Board to provide a resolution.

“For the past 12 years, we have been using the interim water-typing rule that does not protect fish habitat …,” Glasgow said. “The interim rule allows surveyors to go to a stream anytime (during a specified period) and electrofish a stream. If they do not find fish during the one-day survey, they can identify it as Type N.”

The result is that many miles of fish habitat are getting little or no buffer protection, he argues. Where mistakes are made and small buffers or no buffers are allowed, it will take decades before the trees grow back to become good habitat again.

In mediation talks, the various parties — landowners, environmental groups, tribes and governments — have come to consensus on the overall framework to identify break points where the fish habitat ends, but the details are still unresolved.

Karen Terwilliger, senior director of forest and environmental policy for the Washington Forest Protection Association, said it is important to remember that these discussions are not about streams where adult salmon will go to lay their eggs.

“It’s the tail end of where the fish might be,” said Terwilliger, whose organization represents large timberland owners. The areas in dispute are generally small streams mostly occupied today by resident fish, including various species of trout and tiny sculpins.

The break point between fish and non-fish areas should be a location where the last fish is equally likely to stop above and below that point, she said. The scientific standard is that the break point should be accurate 95 percent of the time, as required by adaptive management provisions of the Forest and Fish Law.

“We think fish presence will always be an important part of the system,” she said. “Different streams are different. A ‘one size fits all’ does not make sense.”

Environmental groups prefer to avoid methods that rely upon people finding fish, which may or may not be present at the time of a survey. It should be possible to define habitat conditions suitable for fish whether or not they are there at a given time.

Scientific information has evolved to where predictions can be made about where fish will go, Terwilliger said, but there are still questions about what conditions create a barrier to fish. A level of scientific certainty is required before changes can go forward.

“If science says a change needs to be made, then you more forward to make the change,” she said. “To date, we have not seen data that a lot of changes need to be made.”

If a rule change is proposed, it will need to undergo environmental review, a cost-benefit analysis, a small-business economic impact statement and public hearings.

Peter Goldman, director and managing attorney at Washington Forest Law Center, said the adaptive management process should be more than a system of delays. Only recently have things been moving in the right direction, he added.

“The timber industry is powerful,” said Goldman, who represents environmental groups. “They don’t want anything to change.

“We have been trying to negotiate in good faith collaboratively, because that is the Washington way,” he said. “If the Forest Practices Board doesn’t act … it is conceivable that we will have to sue the board and ask the federal government to reconsider the HCP.”

Stephen Bernath, deputy supervisor for forest practices at the Washington Department of Natural Resources and chairman of Forest Practices Board, said the board is moving forward with the help of scientists. New ideas and new technology are being brought into the discussion with the goal of seeing whether a variety of physical parameters alone can be used to identify fish habitat with high probability.

At the Aug. 9 meeting, the board is scheduled to get an update on the progress and to act on staff recommendations about the breaks between fish and non-fish waters. After that, a formal process will begin to incorporate changes into policies, rules and guidance.

Amusing Monday: Strangest impossible secrets of the ocean

“The Richest,” which bills itself as the “world’s most entertaining website,” often features celebrity gossip along with plenty of freakish people, animals and events. Sometimes the website tries to be helpful with videos such as “10 awesome school hacks every student should know.”

In short, it is a three-ring circus with thousands of different acts.

For amusement, I pulled up some water-related videos, which you can watch on this page or link to YouTube:

As implied by the name “The Richest,” this website goes out of its way to find opulent places and products, as in the gold-plated water bottle that one can buy for $60,000. See “10 times rich people took it too far.” It is also amusing to watch “10 ridiculously expensive things that President Trump owns.”

“The Richest” is owned by Valnet, Inc., based in St. Laurent, Quebec, Canada. The company operates 10 similar websites containing well-hyped stories on just about every topic, including :

“The web has a become a streamlined environment where operational excellence wins, and we have embraced this new reality to its fullest,” declares a statement on the Valnet website.

The company boasts of 80 million users with 52 million of them from the U.S., all producing 800 million page views a month. The managers are searching for web content producers, freelance writers and future staffers to build and manage its web production. See the webpage “Careers.”