Category Archives: Fish

Finding answers for dangerous decline of Puget Sound steelhead

Harbor seals have become prime suspects in the deaths of millions of young steelhead trout that die each year in Puget Sound, but the seals may not be working alone.

Trends

Disease and/or various environmental factors could play a part, perhaps weakening the young steelhead as they begin their migratory journey from the streams of Puget Sound out to the open ocean. Something similar is happening to steelhead on the Canadian side of the border in the Salish Sea.

More than 50 research projects are underway in Puget Sound and Georgia Strait to figure out why salmon runs are declining — and steelhead are a major focus of the effort. Unlike most migratory salmon, steelhead don’t hang around long in estuaries that can complicate the mortality investigation for some species.

The steelhead initiative was launched by the Washington Department of Fish and Wildlife and Puget Sound Partnership with funding from the Legislature. The steelhead work is part of the Salish Sea Marine Survival Project, which is halfway through its five-year term, according to Michael Schmidt of Long Live the Kings, which coordinates the effort in the U.S. The larger project involves at least 60 organizations, including state and federal agencies, Indian tribes and universities.

A new report on research findings for steelhead (PDF 9.8 mb) describes the most significant results to date for our official state fish, which was listed as “threatened” in 2007. While steelhead populations on the Washington Coast and Columbia River have rebounded somewhat since their lowest numbers in the 1980s, steelhead in the Salish Sea remain at historical lows — perhaps 10 percent of their previous average.

“Because steelhead are bigger and move fast through the system, they are easier to study (than other salmon species),” Michael told me. “It has been a lot easier to feel confident about what you are finding.”

Abundance

Steelhead can be imbedded with tiny acoustic transmitters, which allow them to be tracked by acoustic receivers along their migration routes to the ocean. It appears that the tagged fish survive their freshwater journey fairly well, but many soon disappear once they reach Puget Sound. The longer they travel, the more likely they are to perish before they leave the sound.

While steelhead are susceptible to being eaten by a few species of birds, their primary predators appear to be harbor seals. These findings are supported by a new study that placed acoustic receivers on seals and observed that some of the transmitters embedded in steelhead ended up where the seals hang out, suggesting that the fish were probably eaten.

In a different kind of tagging study, Canadian researchers placed smaller passive integrated transponder (PIT) tags in a large number of coho salmon and attached devices to read the PIT tags on coho salmon.

“What is most interesting to date,” states a new report from the Pacific Salmon Foundation,“ (PDF 4 mb), “is that we only have confirmed feeding on tagged coho salmon by four of the 20 seals equipped with receivers. This suggests that feeding on juvenile salmon may be an opportunistic behavior acquired by a limited number of seals.”

New studies are underway to confirm steelhead predation by looking at fecal samples from seals in South Puget Sound. Researchers hope to figure out what the seals are eating and estimate steelhead consumption.

As I mentioned at the outset of this blog post, it may be more than a simple case of seals eating steelhead. For one thing, seal populations may have increased while their other food choices have decreased. Would the seals be eating as many steelhead if Puget Sound herring populations were close to their historical averages?

Other factors may be making young steelhead vulnerable to predation. A leading candidate is a parasite called Nanophyetus salmincola, which can infest steelhead and perhaps increase their risk of predation. The parasite’s life cycle requires a snail and a warm-blooded animal, as I described in a story I wrote for the Encyclopedia of Puget Sound — part of a larger piece about disease as a powerful ecological force. Anyway, the snail is found only in streams in South Puget Sound, which might help explain why steelhead deaths are higher among these South Sound populations.

Experiments are underway to compare the survival of two groups of identical steelhead, one group infested with Nanophyetus and one not.

Depending on funding and proper design, another experiment could test whether treating a stream to temporarily eliminate the snail — an intermediate host — could increase the survival of steelhead. If successful, treating streams to remove these snails could be one way of helping the steelhead. For these and other approved and proposed studies, check out the Marine Survival Project’s “2015-2017 Research Work Plan” (PDF 9.3 mb).

Other factors under review that could play a role in steelhead survival are warming temperatures and pollution in Puget Sound, which could help determine the amount and type of plankton available for steelhead and salmon. Could a shift in plankton result in less food for the small fish? It’s a major question to be answered.

I’ve mentioned in Water Ways (3/15/2010) that transient killer whales, which eat seals, sea lions and harbor porpoises, may be helping their distant cousins, the Southern Resident killer whales, which eat fish. Those smaller marine mammals compete for the adult salmon eaten by the Southern Residents. By clearing out some of those competitors, the transients could be leaving more salmon for the Southern Residents.

It may be too early to draw any firm conclusions, Michael Schmidt told me, but transient killer whales may be helping steelhead as well. Last year, when transients ventured into South Puget Sound and stayed longer than usual, the survival rate for steelhead from the nearby Nisqually River was the highest it has been in a long time.

Were the whales eating enough seals to make a difference for steelhead, or were the seals hiding out and not eating while the whales were around. Whether there were benefits for the steelhead, we could be seeing what happens when a major predator (orcas) encounters an abundance of prey (seals).

Canary rockfish likely
to be removed from Endangered Species List

One of the three species of rockfish listed as threatened or endangered in the Puget Sound region is about to be pulled off the Endangered Species List, following recent scientific findings.

Canary rockfish Photo by Tippy Jackson, NOAA
Canary rockfish
Photo by Tippy Jackson, NOAA

Genetic studies carried out with the help of fisherfolk from Kitsap County have determined that canary rockfish are not a discrete population from those found off the Washington Coast. An official comment period on the delisting is open until Sept. 6, as described in the Federal Register.

I first discussed early evidence of this genetic finding a year ago. Kelly Andrews, a genetics expert with NOAA Fisheries, confirmed that limited genetic samples of canary rockfish from coastal areas appeared no different from samples taken from Puget Sound. Kelly wanted to review analyses from additional samples before drawing firm conclusions. See Water Ways, June 18, 2015.

Removing canary rockfish from the Endangered Species List will have no effect on yelloweye rockfish, listed as threatened, or bacaccio, listed as endangered. The change also is expected to have no immediate effects on fishing rules, which are designed to protect all rockfish in Puget Sound.

Rockfish are considered an important part of the Puget Sound ecosystem. Understanding the causes of their decline and finding ways to rebuild their populations could help with the recovery of a variety of other marine species, experts say.

A five-year review (PDF 15.1 mb) on the status of the three species of rockfish was due last year, but it was delayed until April of this year to include the new genetic information. In addition to a proposal to delist canary rockfish, the report discusses the difficulty in gathering population data. The authors were able to report:

“The data suggest that total rockfish declined at a rate of 3.1 to 3.8 percent per year from 1977 to 2014 … or a 69 to 76 percent total decline over that period. We did not find evidence for subpopulations with different population growth rates.”

Those involved in the scientific effort expressed appreciation to the anglers who went out with them to track down rockfish and take fin clips for genetic sampling. The effort also included information from the Washington Department of Fish and Wildlife, where researchers surveyed rockfish areas with divers and remotely operated vehicles.

“Without the expertise of experienced fishing guides, anglers, and WDFW’s rockfish survey data, it would have been difficult to find the canary rockfish and yelloweye rockfish to collect the fin clips needed for the study,” according to a question-and-answer sheet from NOAA Fisheries (PDF 534 kb).

The local fishing experts were able to take the researchers to the hotspots where rockfish have always been found.

During the sampling, fishers were careful to release the rockfish with “descending devices” to get them safely back to deep water, where they reside. That is a technique recommended for all anglers who catch rockfish while fishing for other species. For details, see “Bring That Fish Down” (PDF 673 kb) by California Sea Grant and “Protecting Washington’s Rockfish” by WDFW.

Among those helping with the survey were Ray Frederick, a longtime leader in the Kitsap Poggie Club, a local fishing group, and Randy Jones, a charterboat operator from Port Orchard.

Ray recalls catching rockfish decades ago while fishing for salmon and other fish. “I considered myself lucky if I caught a rockfish and brought it home, because they’re really good eating,” Ray said in a story written by Ed Quimby, a former NOAA writer. “I prefer salmon,” Ray added, “but my wife likes rockfish better.”

Efforts to develop a recovery plan for rockfish continue for yelloweye rockfish and bocaccio as required by the Endangered Species Act. Details can be found on NOAA’s webpage “Rockfish in Puget Sound/Georgia Basin.”

Culverts: Lawmakers face dilemma to fund improved fish passage

I’m certainly no highway engineer, but I’ve been thinking about the difference between building roads in Kansas, where I was born, and building roads in the Puget Sound region.

Kansas has its streams and wetlands to be sure, but nothing like the density of natural features that we find in the Puget Sound watershed, where land elevations change constantly and roadways must cross streams and wetlands at every turn.

For many years, road construction in the Puget Sound region involved filling wetlands and burying pipes just big enough to pass the water. It was assumed that salmon would make it through. But based on our current knowledge of salmon migration, we realize that these shortcuts took a major toll on the populations of salmon and other fish.

This week, the U.S. Ninth Circuit Court of Appeals upheld a lower court ruling requiring state agencies to correct decades of road-building mistakes that impaired salmon passage on state highways and on state forest roads. Check out Monday’s story in the Kitsap Sun.

Priority watersheds chosen by the Fish Barrier Removal Board. Puget Sound: Pilchuck Creek, Pysht River, Goldsborough Creek; Coast: Newaukum; Lower Columbia: Lower Cowlitz; Yakima River: Wilson/Cherry; Snake River: Grande Ronde Tribs, Snake River Tribs; Upper Columbia: Okanogan.
Priority watersheds chosen by the Fish Barrier Removal Board. Puget Sound: Pilchuck Creek, Pysht River, Goldsborough Creek; Coast: Newaukum; Lower Columbia: Lower Cowlitz; Yakima River: Wilson/Cherry; Snake River: Grande Ronde Tribs, Snake River Tribs; Upper Columbia: Okanogan.

The lawsuit, filed by 21 Indian tribes, was based on the idea that undersized and poorly functioning culverts severely affected the total salmon runs in violation of treaties signed in the 1850s, which promised Native Americans the right to fish forever in traditional locations.

The lawsuit did not address culverts owned by the federal government, local governments or private property owners, but the same principles apply. Steps are now being taken to improve salmon passage based on standards developed by the Washington Department of Fish and Wildlife.

Meanwhile, a state advisory committee, known as the Fish Barrier Removal Board, has been working to establish priorities with top-ranked projects providing the greatest improvement in salmon habitat.

Kitsap County Engineer Jon Brand, who serves on the board, described a two-pronged approach to set the priorities. One is to focus on priority watersheds, with the idea of making major improvements in a variety of streams in a given area. (See map above and board materials (PDF 50.4 mb), Oct. 20, 2015.) The second approach is to coordinate planning for top-priority streams, with the idea of working on entire stream systems at once. Obviously, it does not make sense to replace a culvert upstream if a downstream culvert continues to block salmon passage. Check out the list of top-30 ranked projects (PDF 57 kb).

The Fish Barrier Removal Board is putting together a funding package to be submitted to the Legislature. As Jon pointed out, some of the most effective projects for salmon passage are not in the Puget Sound region nor subject to the federal court ruling. The list also goes beyond state roadways and includes a mix of ownerships based on the watershed and stream priorities mentioned above.

State lawmakers face some difficult funding decisions. With the court order hanging over their heads, along with a 2030 deadline, they may choose to do only culvert-removal projects in the Puget Sound region, even though projects in other areas could get a greater bang for the buck. And will there be money left over to support local governments trying to improve salmon passage in their areas?

I asked Jon about the expediency of early road-builders who must have given little consideration to salmon when they filled wetlands, carved out drainage ditches and installed pipes to carry the flow of water. It was not always that way, Jon told me.

That method of road-building arrived with the invention of large earth-moving equipment, he said. In the 1800s and early 1900s, filling a stream and inserting a culvert was more difficult than building a bridge of logs, given the vast quantities of timber on the Kitsap Peninsula.

Those early log bridges no doubt caused fewer problems for salmon, but they did not last. Eventually, nearly every bridge was replaced, often by dumping fill across the stream and allowing a small culvert to carry the water.

As for my misguided notion that Kansas can ignore stream crossings because the state has no serious environmental problems, I found this language in “Kansas Fish Passage Guide” (PDF 2.3 mb), a document written for road-builders:

“In Kansas, fish passage issues caused by culverts were not recognized by road officials until about 2010, when … research indicated that culverts and low-water crossings were a significant cause of habitat fragmentation in the Kansas Flint Hills.

“Many of the threatened and endangered fish in Kansas are a type of minnow or minnow-size fish. Small fish typically are not strong swimmers, so waterfalls, water velocity and turbulence can be a barrier to passage upstream. Culverts are dark and have an atypical channel bottom that may also discourage fish passage. Lack of water depth through the culvert can restrict passage during low-flow seasons…

“Stream barriers reduce habitat range and can adversely affect fish populations upstream and downstream of the stream crossing. A severe event like a drought or oil spill in a stream segment can wipe out a species, and the species cannot repopulate the stream because of the barrier.”

Kansas has begun to prohibit blocking culverts and to address existing fish-passage issues. As the above-referenced publication states, “On the Great Plains, it’s usually easy to design and construct a stream crossing for a two-lane road to provide fish passage.”

If only that were the case in Western Washington.

Engineers find new location for boat facility in Harper Estuary

At a community meeting in March, many residents of Harper in South Kitsap expressed profound disappointment that the latest plan to restore Harper Estuary would remove a low-key boat launch used by many people in the area. See Kitsap Sun story, March 31.

The makeshift boat launch, built on fill, provides the only access to the beach in that area, community members noted. Many expressed their belief that county and state officials had failed in their commitment to maintain beach access.

Not yet approved, this rough drawing shows how a trail alongside Olympiad Drive could be used to reach Harper Estuary. Drawing: Kitsap County Public Works
Not yet approved, this rough drawing shows a trail alongside Olympiad Drive to Harper Estuary.
Drawing: Kitsap County Public Works

After the meeting, five representatives of the community met onsite with officials involved in the project. Several ideas were discussed, and it appears that a new access to the estuary is gaining approval, though it won’t allow vehicles with trailers to reach the water. The new access would be an earthen ramp on the opposite side of Olympiad Drive.

An addendum to the planning documents (PDF 1.1 mb) makes it clear that the old boat launch basically prevents the $4-million restoration project from being done right.

“Retaining the boat landing in its current location will:

  • “Block the ability to replace the undersized culvert with a large bridge in order to restore estuary function and tidal exchange,
  • “Reduce sediment contaminant removal associated with the excavation project,
  • “Retain compacted gravel substrate that does not support aquatic plants or benthic organisms at the existing boat launch, and
  • “Impede restoration of filled estuarine habitat and functional channel geometry.”

The proposal now under consideration is to grade the slope alongside Olympiad Drive at a gentle 5:1 angle. Cars and trucks could pull off the side of the road long enough to unload their boats, which would be carried down the slope. For people who just want to walk down to the water, the ramp would provide the needed access and perhaps the beginning of a proposed trail system around the estuary.

Harper Estuary Contributed photo
Harper Estuary // Contributed photo

A plan to build stairs down to the water from Southworth Drive raised objections during the March meeting, because it would be difficult and unsafe to carry boats across the busy roadway and down concrete steps, which could become slippery. If the stairs are built, which remains undecided, they could be designed to contain gravel, making them less slippery.

Jim Heytvelt, a community leader in Harper, said the new access to the beach would meet the needs of most, but not all, people in the community. Most people in support of the restoration never wanted a major boat launch like the one at Manchester, he said. People are beginning to come around to the reality of the situation, given conditions needed to restore the estuary, he said.

During surveys of the property, officials discovered another problem that could have thrown a monkey wrench into the boat launch at its current location. The county learned that it does not own the property where the boat launch was built, as had been widely assumed. The property is owned by the state Department of Natural Resources — and nobody has ever been given approval to use the site.

Even if the restoration could be done without removing the launch site, nobody knows if the DNR would grant a lease for the use to continue. Someone might need to assume liability at the site. The proposed ramp to the estuary seems to eliminate that problem, as the property is almost entirely owned by the county.

Delays in preparing the plans, getting permits and putting the project out to bid has caused the schedule to slip from early summer into late summer and fall, said Doris Small of the Washington Department of Fish and Wildlife. That assumes the project can be advertised for bids by the end of this month — something that is still not certain.

Any further delays could put the funding in jeopardy and might require new approvals from the Washington Department of Ecology and possibly the Legislature. The restoration money comes from a fund set up to mitigate for damages from the ASARCO smelter in Tacoma, which emitted toxic pollution for decades, some of which reached South Kitsap.

The first phase of the project involves excavation to remove most of the fill dumped into the estuary, allowing the shorelines to return to a natural condition. To complete the restoration, additional funding is being sought to build a bridge, which will replace the culvert under Olympiad Drive. If funding is approved, the bridge could be built as early as next summer.

Another community meeting is scheduled for Wednesday at 6:30 p.m. at Colby United Methodist Church, 2881 Harvey St. SE. Officials will provide an update on the restoration efforts. County Commission Charlotte Garrido said she would like to continue discussions about what the community would like to see in the future, hoping to build a stronger relationship between the county and the community.

Amusing Monday: Ten new species with their own stories to tell

An international team of taxonomists has chosen the “Top 10 New Species of 2016” from among some 18,000 new species named in 2015.

They include a hominin in the same genus as humans and an ape nicknamed “Laia” that might provide clues to the origin of humans, according to information provided by the College of Environmental Science and Forestry at the State University of New York, which compiles the list each year.

The list also includes a newly identified giant Galapagos tortoise, two fish, a beetle named after a fictional bear, and two plants — a carnivorous sundew considered endangered as soon as it was discovered and a tree hiding in plain sight, states a news release from ESF.

The annual list of the top 10 new species was established in 2008 to call attention to the fact that thousands of new species are being discovered each year, while other species are going extinct at least as fast.

“The rate of description of species is effectively unchanged since before World War II,” said Quintin Wheeler, ESF president. “The result is that species are disappearing at a rate at least equal to that of their discovery.

“We can only win this race to explore biodiversity if we pick up the pace,” he said. “In so doing we gather irreplaceable evidence of our origins, discover clues to more efficient and sustainable ways to meet human needs and arm ourselves with fundamental knowledge essential for wide-scale conservation success.”

The top-10 list, compiled by the International Institute for Species Exploration, is a colorful sampling of the new species being named by taxonomists. The list comes out each year around Mary 23 — the birthday of Carolus Linnaeus, an 18th century botanist considered the father of modern taxonomy.

Descriptions of the “Top 10 New Species of 2016” are taken from information provided by ESF, which permitted use of the photographs. Additional information and photos can be found by following the links below.

Giant Tortoise

Chelonoidis donfaustoi

Eastern Santa Cruz Tortoise Photo: Washington Tapia
Eastern Santa Cruz Tortoise // Photo: Washington Tapia

A research team working in the Galapagos Archipelago of Ecuador has discovered that two species of giant tortoises — not just one — co-exist on the island of Santa Cruz. The discovery comes 185 years after Charles Darwin noted that slight variations in the shells of tortoises could distinguish which island they were from, which is among the evidence Darwin used in his theory of evolution.

Giant Sundew

Drosera magnifica

Giant sundew Photo: Paulo M. Gonella
Giant sundew // Photo: Paulo M. Gonella

This particiular giant sundew, a carnivorous plant, is the largest sundew ever found in the New World. It is believed to be the first species of plant discovered through a photograph on Facebook. It is considered critically endangered, since it is known to live in only one place in the world, the top pf a 5,000-foot mountain in Brazil.

Hominin

Homo naledi

Homo naledi Photo: John Hawks, Wits University
Homo naledi // Photo: John Hawks, Wits University

Fossil remains of at least 15 individuals makes this the largest collection of a single species of hominin ever found on the African continent. Once the age of the bones is determined, the finding will have implications for the branch of the family tree containing humans.

Photos and description

Isopod

Iuiuniscus iuiuensis

Isopod Photo: Souza, Ferreira & Senna
Isopod // Photo: Souza, Ferreira & Senna

This tiny amphibious crustacean, discovered in a South American cave, represents a new subfamily, genus and species of isopod with a behavior never seen before in its family group: It builds shelters of mud.

Anglerfish

Lasiognathus dinema

Angler fish Photo Ted Pietsch, University of Washington
Angler fish // Photo Ted Pietsch, University of Washington

This two-inch anglerfish — with its odd fishing-pole-like structure dangling in front — was discovered in the Gulf of Mexico by the National Oceanic and Atmospheric Administration while assessing natural resource damages from the Deepwater Horizon oil spill in 2010. The dangling structure, called an esca, is home to symbiotic bacteria that produce light in the darkness of the deep ocean and is presumably used to catch prey.

Photos and description

Seadragon

Phyllopteryx dewysea

Ruby seadragon Image: Josefin Stiller, Nerida Wilson and Greg Rouse
Ruby seadragon skeleton
Image: Josefin Stiller, Nerida Wilson and Greg Rouse

The ruby red seadragon, related to sea horses, is only the third known species of sea dragon. At 10 inches long and living in relatively shallow water off the West Coast of Australia, it is notable for having escaped notice so long. The ruby seadragon was first identified while testing museum specimens for genetics, then the hunt was on for a living sample.

Beetle

Phytotelmatrichis osopaddington

Tiny beetle Photo: Michael Darby
Tiny beetle // Photo: Michael Darby

The scientific name of this tiny beetle, just 1/25th of an inch long, comes from the fictional Paddington Bear, a lovable character in children’s books who showed up at Paddington Station in London with a sign that read, “Please look after this bear.” The researchers hope the name for the new beetle will call attention to the plight of the “threatened” Andean spectacled bear, which inspired the Paddington books. The beetle is found in pools of water that accumulate in the hollows of plants in Peru, where the bear also is found.

Primate

Pliobates cataloniae

Artists recreation of new primate Image: Mar􀀯a Palmero, Institut Catalá de Paleontologia Miquel (ICP)
Artist recreation of new primate // Image: Marta Palmero, Institut Catalá de Paleontologia Miquel (ICP)

An ape nicknamed “Laia” lived about 11.6 million years ago in what is now Spain, climbing trees and eating fruit. She lived before the lineage containing humans and great apes diverged from a sister branch that contains the gibbons. Her discovery raises the prospect that early humans could be more closely related to gibbons than to the great apes.

Flowering tree

Sirdavidia solannona

Open flower and buds on new tree Photo: Thomas Couvreur
Open flower on new tree // Photo: Thomas Couvreur

Found near the main road in Monts de Cristal National Park, in Gabon, this new tree species had been overlooked for years in inventories of local trees, which tended to focus on larger specimens. The tree grows to only about 20 feet high and is so different from related members of the Annonaceae family of flowering plants that it was given its own genus.

Damselfly

Umma Gumma

Male damselfly Photo: Jens Kipping
Male damselfly // Photo: Jens Kipping

This new damselfly, called the sparklewing, is among an extraordinary number of new damselflies discovered in Africa, with 60 species reported in one publication alone. Most of the new species are so colorful and distinct that they can be identified solely from photographs. The name Umma Gumma was taken from the 1969 Pink Floyd album, “Ummagumma,” which is British slang for sex.

Amusing Monday: Blake Shelton partakes of sushi with Jimmy Fallon

Country music star Blake Shelton thought his cup of sake tasted like “Easter egg coloring,” but he kept on asking for more of the rice wine at the Japanese sushi restaurant he was visiting.

“Tonight Show” host Jimmy Fallon convinced Blake to go with him to the restaurant, because Blake had never tried sushi. With cameras rolling, Jimmy demonstrated the finer points of eating the various offerings, but at times Blake seemed to have the upper hand.

Blake’s enjoyment of the experience appears somewhat mixed, as you can see in the first video, but the situation was amusing.

The second video describes a practical joke that the Japanese people have allegedly been pulling on Australians, although they are not the only people in the world to have fallen for this long-running practical joke. I was unable to locate the original producer of the video, but it has been posted numerous times the past few years. I’ve posted the earliest version I could find.

The Japanese people apparently can find amusement in some of their own cultural traditions. Numerous videos called “The Japanese Tradition” were created by the comedy duo of Jin Katagirl and Kentaro Kobayashi, who call themselves the Rahmens. In their short videos, they make light of customs from chopsticks to games. Someone named Frank Prins collected a bunch of these videos and posted them on his YouTube channel.

I’ve posted one of videos with English subtitles called “The Japanese Tradition — Sushi,” which covers the entire experience at a Sushi bar. Another amusing version of this video comes with an English voice narrating the piece. The narrator writes on YouTube that he re-edited the video and tweaked the humor to make it more appealing to a Western audience.

“The Japanese culture is something I have absolutely fallen in love with, and I intend no disrespect by any of the jokes used in the video,” states the unidentified narrator. The reviews were mixed about whether it was appropriate to alter the original.

Time to rethink how contaminants get into Puget Sound food web

For years, I have been told the story of how PCBs and other toxic chemicals cling to soil particles and tiny organic debris as polluted water washes off the land.

Richard Henderson of the Skagit River System Cooperative uses a beach seine to catch juvenile chinook salmon near the Skagit River delta. Fish from this rural area were found to be less contaminated than fish taken from urban areas. Photo: WDFW
Richard Henderson of the Skagit River System Cooperative uses a beach seine to catch juvenile chinook salmon near the Skagit River delta. Fish from this rural area were found to be less contaminated than fish taken from urban bays. // Photo: WDFW

Eventually, the PCB-laden particles are carried into Puget Sound, where they settle to the bottom. From there, they begin working their way into marine animals, disrupting their normal functions — such as growth, immune response and reproduction.

The idea that contaminants settle to the bottom is the story I’ve been told for as long as I can remember, a story long accepted among the scientific community in Puget Sound and across the U.S. So I was surprised when I heard that leading scientists who study toxic chemicals in Puget Sound were questioning this long-held idea about how dangerous chemicals get into the food web.

Puget Sound may be different from other waterways, they said.

“When you look at the concentrations in herring and the concentrations in the sediments, something does not line up,” Jim West told me. “The predictions are way off. We think there is a different mechanism.”

Jim is a longtime researcher for the Washington Department of Fish and Wildlife. I have worked with him through the years on various stories about the effects of contaminants on marine organisms. But now he was talking about changing the basic thinking about how chemicals are transferred through the food web.

Jim postulates that many of these PCB-laden particles that wash down with stormwater never sink to the bottom of Puget Sound. Instead, they are taken up by tiny organisms floating in the water. The organisms, including bacteria and phytoplankton, are eaten by larger plankton and become incorporated into fish and other free-swimming creatures — the pelagic food web.

Jim presented his findings at the Salish Sea Ecosystem Conference last month in Vancouver, B.C. Sandie O’Neill, another WDFW researcher, presented other new information about the transfer of contaminants through the food web — from plankton to herring to salmon to killer whales.

My stories about the studies conducted by Jim and Sandie (with help from a team of skilled scientists) were published today in the Encyclopedia of Puget Sound, where you can read them. These are the first of at least 10 story packages to be to written by a team of reporters working for the Puget Sound Institute.

The Salish Sea conference was attended by more than 1,100 people, including 450 researchers and policymakers who talked about new information related to the Salish Sea — which includes Puget Sound in Washington, the Strait of Georgia in British Columbia and the Strait of Juan de Fuca on the U.S./Canada border.

When I first heard about Jim West’s idea regarding the fate of toxic chemicals circulating in Puget Sound, I thought one result might be to shift restoration dollars away from cleaning up sediments to cleaning up stormwater. After all, if the majority of PCBs aren’t getting into the sediments, why spend millions of dollars cleaning up the stuff on the bottom? Why not devote that money to cleaning up stormwater?

In fact, the worst of the contaminated sediments in Puget Sound have been cleaned up, with some cleanups now under way. That helps to ensure that toxic chemicals won’t get re-suspended in the water and taken up into the pelagic food web all over again. A few hotspots of contaminated sediments may still need some attention.

As far as putting the focus on stormwater, that’s exactly what the Puget Sound Partnership has done with support from the Department of Ecology and other clean-water agencies. It is now well established that the key to reducing pollution in Puget Sound is to keep toxic chemicals out of stormwater or else create settling ponds, rain gardens, pervious pavement and other methods to capture the PCB-laden particles before they reach Puget Sound.

I noticed that Ecology just today announced a new round of regulations to control stormwater in King, Pierce, Snohomish and Clark counties. Proposed changes include updating stormwater programs for new construction projects and for redevelopment. An appendix will describe Seattle’s plan to reduce stormwater pollution in the Lower Duwamish River, where PCBs are a major problem. For more on stormwater regulations, go to Ecology’s website.

As Sandie told me during our discussions, all the work on fixing habitat in Puget Sound streams is not enough if we can’t control the discharge of PCB’s — which were banned in the 1970s — along with newer contaminants still working their way into our beloved waterway. Any measure of healthy habitat must include an understanding of the local chemistry.

‘Sonic Sea’ movie takes us to the underwater world of sound

“Sonic Sea,” which will air Thursday on Discovery Channel, will take you down beneath the ocean waves, where sounds take on new meaning, some with dangerous implications.

Humans spend most of their time in air, a medium that transmits light so well that we have no trouble seeing the shapes of objects in a room or mountains many miles away. In the same way, water is the right medium for sound, which shapes the world of marine mammals and other species that live under water.

The hour-long documentary film reveals how humpback whales use low-frequency sounds to communicate with other whales across an entire ocean and how killer whales use high-frequency sound to locate their prey in dark waters.

Michael Jasny
Michael Jasny

“The whales see the ocean through sound, so their mind’s eye is their mind’s ear,” says Michael Jasny of the Natural Resources Defense Council, an environment group that produced the film with the help of the production company Imaginary Forces.

“Sonic Sea” opens with Ken Balcomb, dean of killer whale research in Puget Sound, telling the story of how he learned about 16 beaked whales that had beached themselves in the Bahamas, where he was doing research in 2001.

“Animals that I had grown to know over a 10-year period were now dead,” Ken says during the movie, recalling the horrifying day when one whale after another was discovered dead or dying. “They were trying to get away. I was driven to find out why.”

Ken Balcomb
Ken Balcomb

Thanks to Ken’s presence during that stranding incident, experts were able to prove that Navy sonar could be deadly. It took two years for Navy officials to overcome their denial.

As I watched the film, I wondered if people would identify with the idea that hearing to marine mammals is like sight to humans. Would people see how much humans have invaded the underwater world with noise from ship traffic, oil exploration, military training and shoreline construction?

“I listen to the world, and to me song is life,” said Chris Clark, a bioacoustics expert at Cornell Lab of Ornithology,. “It is the essence of who we are, and it joins us all. The problem is, in the ocean, we are injecting enormous amounts of noise, so much so that we are acoustically bleaching the ocean. All the singing voices of the planet are lost in that cloud of noise.”

Chris Clark
Chris Clark

This type of human invasion is different from wiping out habitat as new construction changes the land, but the effect can be equally devastating to some species.

In September of 2001, a group of researchers on the East Coast were collecting fecal samples from right whales to check for stress hormones. Stress levels were running high among the whales, except for a few days when the levels dropped dramatically. That happened right after Sept. 11, when ship traffic in the area was shut down following the bombing of the World Trade Center. It still isn’t clear what that constant stress is doing to the animals, but it can’t be good. See Duke University press release.

The good news, the film tells us, is that ships can be made quieter, with an important side benefit: Quieter ships are more efficient, which makes them cheaper to operate. Ships can also reduce noise by going slower, saving on fuel. Beyond shipping, people can find ways to operate in the ocean with less sonic harm to sea life.

The Navy’s viewpoint, as represented in the film, appears to be a more enlightened approach that I have seen until now. Of course, protecting Navy ships against enemy attacks is the priority, but the need to accommodate marine life seems to be recognized to a greater degree.

“It comes down to what we value,” Clark said. “We value a living ocean. We are putting the ocean at risk. And if you put the ocean at risk, you are putting all of us at risk.”

The first video on this page is the trailer to “Sonic Sea” as provided by the producers of the film. The second is the trailer provided by Discovery Channel.

Research cruise studies ocean acidification
along West Coast

A major study of ocean acidification along the West Coast is underway with the involvement of 17 institutions, including 36 scientists from five countries.

NOAA's Research Vessel Ronald H. Brown NOAA photo
NOAA’s Research Vessel Ronald H. Brown
NOAA photo

Based aboard the NOAA Research Vessel Ronald H. Brown, the researchers are taking physical, chemical and biological measurements as they consider a variety of ecological pressures on marine species. They will take note of changes since the last cruise in 2013. To obtain samples from shallow waters, the researchers will get help along the way from scientists going out in small vessels launched from land. Staff from Olympic National Park, Channel Islands National Park and Cabrillo National Monument will assist.

The cruise started out last Thursday from San Diego Naval Base. Researchers have been posting information about the trip and their work on a blog called “West Coast Ocean Acidification.”

The month-long working adventure is the fifth of its kind in areas along the West Coast, but this is the first time since 2007 that the cruise will cover the entire area affected by the California Current — from Baja California to British Columbia. The video shows Pacific white-sided dolphins as seen from the deck of the Ron Brown on Monday just west of Baja California.

As on cruises in 2011–2013, these efforts will include studies of algae that cause harmful blooms, as well as analyses of pteropod abundance, diversity, physiology, and calcification, said Simone Alin, chief scientist for the first leg of the cruise.

“We are pleased to welcome new partners and highlight new analyses on this cruise as well,” she continued in her blog post. “For example, some of our partners will be employing molecular methods (proteomics, genomics, transcriptomics) to study the response of marine organisms to their environments.

“We also have scientists studying bacterial diversity and metabolic activity in coastal waters participating for the first time. New assays of stress in krill and other zooplankton — important fish food sources — will also be done on this cruise. Last but not least, other new collaborators will be validating measurements of ocean surface conditions done by satellites from space.”

To learn how satellites gather information about the California Current, check out Earth Observatory.

The research crew takes water samples using the CTD rosette off the coast of Baja California. Photo: Melissa Ward
The research crew takes water samples using the CTD rosette off the coast of Baja California.
Photo: Melissa Ward

With rising levels of carbon dioxide bringing changes to waters along the West Coast, researchers are gathering information that could help predict changes in the future. Unusually warm waters in the Pacific Ocean the past two years (nicknamed “the blob”) may have compounded the effects of ocean acidification, according to Alin.

Reading the cruise blog, I enjoyed a piece by Melissa Ward, a doctoral candidate in the Joint Program in Ecology from UC Davis and San Diego State University. Her story begins:

“As I prepared to leave for the West Coast OA research cruise, many family and friends skipped right over the ‘research’ part, and jumped straight to ‘cruise’. But to their disappointment, the photos of me sitting by the pool drinking my margarita will never materialize.

“The Ron Brown, our research vessel, does have two lounge chairs on the main deck, but they are strapped down to keep them from flying off as we go tipping back and forth with the ocean swells. Immediately after boarding the ship for departure from San Diego to Mexico, you have to start adjusting to this never-ending sway. After some stumbles and falls (which I’m certain the crew found entertaining), you get used to the motion, and can at least minimize public clumsiness.”

Brandon Carter, mission scientist on the cruise, provides a delightful primer on the pros and cons of carbon dioxide in a blog entry posted Tuesday, and Katie Douglas , a doctoral student at the University of South Florida’s College of Marine Science posted a blog entry yesterday in which she discusses the CTD rosette, a basic piece of oceanographic equipment used to continuously record conductivity (salinity), temperature and depth as it is lowered down into the ocean. The remote-controlled device can take water samples at any level.

Elwha River:
a continuing march
on the way to renewal

It has always been a question to ponder: Will the most significant changes to the Elwha River ecosystem occur upstream of where two dams have been removed or downstream where the river enters the Strait of Juan de Fuca?

Photo: Olympic National Park
Photo: Olympic National Park

Soon after each dam was torn down in succession — the lower one first — salmon began migrating upstream, while more than 30 million cubic yards of sediment began moving downstream.

It could take a number of years to rebuild the extensive runs of salmon, including the prized chinook for which the Elwha was famous among salmon fishermen across the country. Will we ever see the legendary 100-pound chinook return to the Elwha, assuming they ever existed? That was a question I explored in a story for the Kitsap Sun in September 2010.

On the other hand, massive amounts of sediment have already spilled out of the Elwha River, building an extensive delta of sand and gravel, including about 80 acres of new habitat and two miles of sandy beach.

Reporter Tristan Baurick focused on the dramatic shoreline changes already taking place at the mouth of the Elwha in a well-written story published in Sunday’s Kitsap Sun.

The Coastal Watershed Institute, which is monitoring the shoreline near the mouth of the Elwha has documented increases in critical forage fish populations, including surf smelt, sand lance, eulachon (candlefish) and longfin smelt. See CWI Blog. These fish feed a host of larger fish, birds and marine mammals.

Tristan describes the changes offshore, where an area starved of sediment is turning into prime habitat for starry flounder, Dungeness crab and many other animals. Rocky outcroppings that once provided attachment for bull kelp is giving way to fine sand, which allows for colonization by eelgrass and a host of connected species. I described some of the early changes in the flora in a Kitsap Sun story in March of 2013.

For people to view the restoration first-hand, I described a day trip to the Elwha in a Kitsap Sun story in April of 2013. Along the way, you can check out the history, enjoy the vantage points and learn about the changes taking place. Tristan offers a suggestion worth heeding to ensure ongoing beach access.

“Access to the beach is granted by the dike’s owners. They could take that away if the area’s overwhelmed with trash, noise and other nuisances, so keep that in mind when you visit.”

If you’d like to see a video record of dam removal and ecosystem recovery, you may wish to view the film “Return of the River” to be shown at Bremerton’s Admiral Theatre on Friday, March 13. The film will be followed by a panel discussion involving the film’s producers, John Gussman and Jessica Plumb. For details, check the Kitsap Sun website.